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Spatially Coupled Low-Density Parity-Check Codes

Over Fading Channels

Adway Girish

Abstract

Low-density parity-check (LDPC) codes have achieved great fame as capacity-approaching

codes. A surprising result has been the marked improvement in decoding thresholds and error

performance obtained on ‘coupling’ blocks of LDPC codes into a single chain in a convolu-

tional manner, called spatially coupled LDPC (SC-LDPC) codes. We look at an application

of these codes over practical fading channels, with interleaving to maximise performance.

Since the promised improvement requires large blocklengths, causing large decoding latency,

we also study the performance of an efficient, low-complexity windowed decoder.
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Chapter 1

Motivation

The need for faster, more efficient and more reliable communication paradigms in the present

digital age is obvious. Ever since Shannon’s landmark 1948 result [1] which guarantees that

with proper encoding, it is possible to transmit across noisy channels with arbitrarily low

errors as long as the rate of transmission is below the channel capacity, we have been aware

of several such ‘codes’, termed as error-correcting codes. The earliest of these (such as

Hamming, Golay, Bose–Chaudhuri–Hocquenghem, Reed-Solomon codes) had algebraic or

topological structures to allow for efficient decoding, but Shannon’s results were obtained

as averages of random ensembles and these codes fell short of the promised performance at

finite blocklengths.

It remained this way until the the early 1990s, when turbo codes [2] were discovered –

random-like but with enough structure to be recovered by low-complexity iterative decoding.

This also led to the re-discovery of low-density parity-check (LDPC) codes [3], originally

proposed by Gallager in the 1960s, but discarded due to limitations in the computational

power available at the time. LDPC codes have since been shown to achieve performances

extremely close to the Shannon limit [4], and have lower error floors than turbo codes. These

are two instances of more general sparse graph codes.

The decoding threshold of a code is the maximum noise at which we can still obtain
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Chapter 1: Motivation

arbitrarily low error rates. Maximum a posteriori (MAP) decoding is the optimal decoding

strategy – no other decoder can do better, i.e. the MAP threshold is the highest – but it has

a high complexity. On the other hand, the belief-propagation (BP) decoding algorithm for

sparse graph codes has a low complexity, at the cost of lower BP thresholds in general. This

is where ‘spatial coupling’ comes in – the method of ‘unwrapping’ a cyclic block code into

a convolutional structure. It has been proven that for spatially coupled LDPC (SC-LDPC)

codes (also called convolutional LDPC codes), the BP threshold is numerically indistinguish-

able from the MAP threshold of the underlying ensembles [5, 6] – we obtain the performance

of a high-complexity decoder using a low-complexity decoder.

To see the effect of this improvement in action, we look at the performance of SC-LDPC

codes over correlated fading channels, where the channel strength varies with time and

frequency. These channels are known to be favourable to convolutional codes [7], so it is

expected that convolutional LDPC codes do well over them too [8]. The large blocklengths

needed to realise the performance improvement induce large decoding delays, which are not

acceptable in a practical implementation. This is dealt with by using a windowed decoder [9,

10], which performs BP decoding on small sections of the code as they are received instead

of waiting for the entire message. Studying the performance of such a decoder is important

since it makes the remarkable theoretical result above practically useful.
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Chapter 2

Background and Prior Work

In this chapter, we review the existing literature and provide the preliminaries that form the

basis for the study of SC-LDPC codes that follow.

2.1 From Codes to LDPC Codes

We start by quickly looking at some basic concepts and setting up notation, provided for

completeness. A code C of length n (called the blocklength) and cardinality C over a field

F is a set of C elements from Fn. The rate of a code is the number of information symbols

per transmitted symbol, given by R = 1
n

log|F|C. Here we only look at binary codes, where

F is taken to be the Galois Field F2 (elements are 0 and 1; addition and multiplication are

modulo 2).

Linear codes are those which are closed under addition and scalar multiplication, i.e. it

forms a subspace of Fn. Let the dimension of this subspace be k (0 ≤ k ≤ n). Then C

has |F|k codewords and a linearly independent basis containing k vectors of length n. These

vectors form a k× n matrix G called the generator matrix of C. We also have an equivalent

representation of a linear code C in terms of a parity-check matrix H, with the property that

for every codeword x ∈ C, Hxᵀ = 0. Since G has a dimension of k, H has a dimension of

m = n− k by the rank-nullity theorem.
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Chapter 2: Background and Prior Work

The parity-check matrix H is an m×n matrix. To this we can associate a bipartite graph

with m check nodes and n variable nodes, where there is an edge from the ith check node to

the jth variable node if the element at the ith row and jth column (denoted as Hij) is 1 – this

is called a Tanner graph representation of the code C. Since the parity-check matrix is not

unique for a code, neither is the Tanner graph. As an example, consider the parity-check

matrix H of a (7,4,3)-Hamming code given in Eqn. 2.1 and its associated Tanner graph

given in Fig. 2.1.

H =


1 1 0 1 0 0 0

0 0 1 1 0 1 0

0 0 0 1 1 0 1

 (2.1)

Figure 2.1: Tanner graph for the parity-check
matrix H given in Eqn. 2.1 [11]

Linear codes that have at least one sparse Tanner graph are called low-density parity-

check (LDPC) codes. LDPC codes where every check node has the same degree, say K, and

every variable node has the same degree, say J , are called (J,K)-regular LDPC codes. The

parity-check matrix H of such a code has K ones in each row and J ones in each column.

These codes have a rate of R ≥ 1− J
K

, with equality only if H has full rank.

LDPC codes where the degrees of the check and variable nodes have some fixed distri-

bution are called irregular LDPC codes.

2.2 Decoding LDPC Codes : Belief-Propagation

We now look at how to decode a corrupted message received as the output of an LDPC

codeword through some noisy channel. The bipartite graph representation of the code comes

in handy here. We separate variable and check nodes to different sides, then ‘pass messages’
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iteratively from one to the other. There are combining rules at each node to evaluate the

message that it sends out in the next iteration. At each step, our knowledge of the codeword

gets stronger till we can do no better (either the codeword is completely decoded or we

are stuck in some stopping set). This is called the message-passing decoder or the belief-

propagation (BP) algorithm. In particular, we look at the BP algorithms for LDPC codes

over the Binary Erasure Channel (BEC) and the Binary Additive White Gaussian Channel

(BAWGNC) respectively. Since both these channels are symmetric with respect to a binary

input, we assume that the codeword sent is the all-zero codeword without loss of generality.

2.2.1 Binary Erasure Channel

The BEC is characterised by its erasure probability ε. It takes a binary input (0 or 1), and

deletes it to form an erasure ε with probability ε. This is represented in Fig. 2.2a. The BP

algorithm for the Binary Erasure Channel (BEC) is given in Alg. 1. The output obtained

is the decoded codeword of length n. The codeword sent is assumed to be x = (0, . . . , 0) of

length n (changes for a general x are given as comments).

(a) BEC model
(b) BAWGNC model

Figure 2.2: Channel models – Xt denotes the input, Yt denotes the output [11]

2.2.2 Binary Additive White Gaussian Noise Channel

We consider the BAWGNC with Binary Phase Shift Keying (BPSK) modulation, i.e. 0 7→ +1

and 1 7→ −1. Then the transmitted codeword becomes x = (+1, . . . ,+1) of length n. The
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Chapter 2: Background and Prior Work

Algorithm 1 BP for the Binary Erasure Channnel (BEC)

Input: received noisy codeword y ∈ {0, ε}n, and the Tanner graph C corresponding to the
LDPC code used . y ∈ {0, 1, ε}n

Output: variable node outgoing messages after all iterations
1: outgoing message from variable node ← bit value ∈ {0, ε} . ∈ {0, 1, ε}
2: while at least one bit was corrected in the previous iteration do
3: for each check node do
4: if any incoming message is ε then
5: outgoing message = ε
6: else
7: outgoing message = 0 . modulo-2 sum of incoming messages
8: end if
9: end for
10: for each variable node do
11: if all incoming messages are ε then
12: outgoing message = ε
13: else
14: outgoing message = 0 . 0 or 1, all incoming non-erasure messages coincide
15: end if
16: end for
17: end while

received message is given by y = x + w where w ∼ N (0, σ2), i.e. w is a Gaussian noise

vector of variance σ2 as shown in Fig. 2.2b. We define the signal-to-noise ratio (SNR) as

the ratio of the energy of the signal to that of the noise, σ2, i.e. SNR = 1
σ2 .

Since the output vector takes continuous values, we use soft-decision decoding to obtain

the best performance. For this we require a quantity called the log-likelihood ratio (LLR) for

each bit i ∈ {1, . . . , n}, given the transmitted codeword x = (x1, . . . , xn) and the received

message y = (y1, . . . , yn), denoted by

li = log
Pr{xi = +1 | yi}
Pr{xi = −1 | yi}

; for BAWGNC, li =
2yi
σ2

(2.2)

The LLR vector L = (l1, . . . , ln) represents the strength of our ‘belief’ of the bit value. It

is a sufficient statistic for y with respect to decoding. The algorithm for BP decoding over

BAWGNC using LLRs is given in Alg. 2. The calculation of the outgoing messages from

check nodes can be greatly simplified with a log-max approximation as in Eqn. 2.3 (we use
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the fact that for f(x) = log tanh |x|, f(x) = f−1(x) and |f | is decreasing for x > 0).

l = 2 tanh−1

(∏
j

tanh

(
lj
2

))

=⇒
∣∣∣∣log tanh

(
|l|
2

)∣∣∣∣ =
∑
j

∣∣∣∣log tanh

(
|lj|
2

)∣∣∣∣ ≈ max
j

∣∣∣∣log tanh

(
|lj|
2

)∣∣∣∣
=⇒ |l| ≈ min

j
|lj| (2.3)

The sign of l is determined by checking the number of positive and negative lj.

Algorithm 2 BP for the Binary Additive White Gaussian Noise Channel (BAWGNC)

Input: received noisy codeword y ∈ Rn, and the Tanner graph C corresponding to the
LDPC code used

Output: variable node outgoing messages after all iterations
1: outgoing message from variable node i ← LLR value li ∈ R at all i
2: for a maximum number of iterations do
3: for each check node c do
4: outgoing message to variable node v:

5: l = 2 tanh−1
(∏

j tanh
(
lj
2

))
, j covers all incoming edges to c except from v

6: end for
7: for each variable node v do
8: outgoing message to check node c:
9: l =

∑
j lj, j covers all incoming edges to v except from c

10: end for
11: end for

2.3 From LDPC Codes to SC-LDPC Codes

Before we move on to the construction of spatially coupled LDPC (SC-LDPC) codes, we

study at a protograph-based code construction [12].

2.3.1 Protographs

We can simplify the construction of large codes using smaller representations containing

their essence. Consider a small bipartite graph with bv variable nodes and bc (< bv) check
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nodes, and its associated parity-check matrix B. The graph is called the protograph and the

matrix B is called the base matrix of the parity-check matrix (and hence code) that will

be constructed. The protograph can be expanded to a code of blocklength n = Mbv by a

process called M-lifting, where each edge e in the protograph (connected to variable node

v and check node c) is replaced by a collection of M edges connecting M copies of v to M

copies of c; these connections are then randomly permuted among themselves. Concretely,

to obtain the M -lifted parity-check matrix H from the protograph B, replace each non-zero

element Bij in B by the sum of Bij M ×M permutation matrices and each zero element

by an all zero M ×M matrix. This new parity-check matrix is an Mbc ×Mbv matrix and

the code represented by it has the same rate as that of the protograph. The collection of all

codes represented by a protograph is called an ensemble. The design rate of this ensemble

is given by R = 1 − bc
bv

(this actually gives a lower bound to the rates of the codes in the

ensemble – when some check nodes are redundant we get higher rates – this difference is

negligible and we henceforth refer to them interchangeably).

For example, consider a (3, 6)-regular LDPC code of any arbitrary blocklength. This can

be concisely represented by the protograph shown in Fig. 2.3a (each check node has six

edges going to variable nodes, and each variable node has three edges going to check nodes

– hence the check node degree is 6, and the variable node degree is 3).

(a) A (3,6)-regular protograph
(b) Terminated protograph for the C(3, 6, L) ensemble with cou-
pling width w

Figure 2.3: Protograph representations of LDPC and terminated SC-LDPC codes [12]

8
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2.3.2 Spatial Coupling

In short, spatial coupling refers to linking a sequence of individual block protographs into

a chain by spreading some edges to neighbouring protographs to obtain a convolutional

protograph. The number of block protographs coupled together can be finite or infinite

(one-sided or two-sided); we restrict our attention to the former.

Suppose we have L (> 0) block protographs to couple together (L is then called the cou-

pling length). Place them at positions indexed by t = 0, . . . , L− 1. Consider the protograph

at position t. Take the Bij edges connecting variable node vj to check node ci and spread

them over to check nodes ci at the w+ 1 positions given by t, t+ 1, . . . , t+w (keeping them

fixed to the vj at position t), where w (> 0) is called the coupling width of the code. This is

illustrated in Fig. 2.3b. The convolutional protograph thus generated has (L + w)bc check

nodes and Lbv variable nodes. Note that the check nodes at the ends of this protograph

have a lower degree. This leads to a rate loss, i.e. the design rate of this protograph is

RL = 1− (L+w)bc
Lbv

= 1− (L+w)
L

(1−R) < R, where R is the design rate of the underlying block

protograph. The strength of these codes lies in the depth of the coupling, represented by

the constraint length, ν = M(w+ 1)bv. Such a construction gives what is called a terminated

SC-LDPC ensemble, as shown in Fig. 2.3b. An alternative method is to spread the edges

modulo L – this gives us tail-biting ensembles with a protograph having Lbc check nodes and

Lbv variable nodes (the rate and degree distribution remain the same as the underlying pro-

tograph; their properties are closer to unterminated convolutional codes). Especially useful

to us will be the terminated ensemble of coupling length L where the underlying protograph

is that of a (J,K)-regular ensemble. This will be referred to as the C(J,K, L) ensemble.

The spreading can be represented by (w+ 1) number of bc× bv component base matrices

Bi(t) at each position index t satisfying
∑w

i=0 Bi(t) = B for all t. Bi(t) then represents the

mini protograph formed between the variable nodes at position t and the check nodes at

position t + i. We will look only at time-invariant edge-spreading where Bi(t) = Bi for all

t. We can now represent our newly generated terminated convolutional protograph in terms

9
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of these component base matrices as the (L+ w)bc × Lbv matrix given by

B[0,L−1] =



B0

B1 B0

... B1
. . .

Bw
...

. . . B0

Bw B1

. . .
...

Bw



. (2.4)

2.3.3 Performance of LDPC Codes vs. SC-LDPC Codes

The capacity of a channel is the maximum possible rate of transmission over the channel

using any code such that the error probability can be made arbitrarily low by increasing

the blocklength. Similarly, the threshold of a code ensemble over a general channel is the

maximum channel ‘noise’ such that arbitrarily low error rates can be obtained. For a BEC

the threshold is the maximum erasure probability and for the BAWGNC it is the minimum

SNR (or maximum σ). For any code, the optimal decoder is the maximum a posteriori

(MAP) decoder, which maximises the probability of the chosen codeword having been the

original, conditioned on the probability that we have observed the received codeword. The

general MAP decoding problem has no efficient algorithms (that are of polynomial order in

the blocklength) – this is a high-complexity task. Belief-Propagation is a low-complexity

algorithm – unfortunately, it does not achieve MAP performance over general LDPC codes.

But remarkably, it has been shown (first for the BEC [5] and later for general binary memo-

ryless symmetric channels [6]) that BP decoding on SC-LDPC ensembles (in the limit where

L goes to infinity) gives us thresholds that are numerically identical to the MAP thresholds

of the underlying ensembles, which are strictly greater than their BP thresholds.

For example, consider the (3,6)-regular LDPC ensemble. This is a code of rate R =

1 − 3
6

= 0.5, so had it been capacity-achieving, the MAP threshold would have been 0.5,

10
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since the capacity of a BEC is given by C = 1 − ε. It can be calculated that the MAP

threhold is εLDPC
MAP = 0.4881, and the BP threshold is εLDPC

BP = 0.429. However, the limit of

the BP threshold of the C(3, 6, L) as L→∞ is calculated to be εSC-LDPC
BP = 0.4881 = εLDPC

MAP .

Some more such examples are shown in Fig. 2.4, along with their evolution as a function of

L.

0.4 0.5 0.6 0.7

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Figure 2.4: BP thresholds over the BEC of (J,K)-regular and associated C(J,K, L) ensembles
for different values of L. Observe that as L → ∞, the thresholds saturate at levels greater
than the (J,K)-regular thresholds. The Shannon limit R = 1 − ε is shown for reference.
(Plot generated by own program to find BP thresholds using density evolution algorithm in
[12, Sec. III-B])

2.4 Fading Channels and Diversity

Having completed the required background on SC-LDPC codes, we digress to study the

channel over which we look at an application of these codes – the fading channel.

2.4.1 The Fading Channel Model

Wireless channels have variations in the channel strength over both time and frequency. This

is called fading. A channel which models such variations is called a fading channel. They also
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introduce zero-mean additive white Gaussian noise of variance σ2. We look at the discrete-

time complex baseband model. A detailed explanation of the physical mechanisms that

lead to the mathematical models can be found in Fundamentals of Wireless Communication

[13]. The channel itself can be modelled as a time-varying filter with the lth filter tap given

by hl[m] (a random variable) at time index m, and the effect of the channel on the input

x = (. . . , x[−1], x[0], x[1], . . .) as

y[m] =
∑
l

hl[m]x[m− l] + w[m], (2.5)

where w[m] is a discrete-time complex zero-mean white Gaussian process. In particular, we

will only study single-tap filter models for the fading channel, given by

y[m] = h[m]x[m] + w[m]. (2.6)

The filter taps can be modelled in several ways depending on the physical mechanism of

fading that most affects the channel strength. In the case of wireless communication channels

where there are several scatterers in the path and no dominant line-of-sight component, we

assume that hl[m] has both real and imaginary components distributed independently and

identically with zero mean and variance
σ2
l

2
, represented as hl[m] ∼ CN (0, σ2

l ) (circular

symmetric complex Gaussian). This model is called Rayleigh fading because the effect of

this model is that the magnitude of the input gets scaled by |hl[m]|, which is Rayleigh

distributed with probability distribution function (PDF) given by

fR(r) =
r

σ2
l

exp

(
− r2

2σ2
l

)
for r ≥ 0. (2.7)

2.4.2 Fast and Slow Fading

Note that the filter taps need not be independent across time – in fact, since the rate of

channel variation is finite (arising as a Doppler shift from a moving antenna, for example), we
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have that realistic fading channels are necessarily temporally correlated. Such a fading model

is called a continuously-varying fading channel, as opposed to block fading channels where

the channel parameter takes an independent (random) value for each block of indices. The

speed of variation of the channel (number of time indices after which the channel becomes

uncorrelated with the initial value) is represented by the normalised Doppler frequency,

denoted by fd or FdTs (Fd is the actual Doppler frequency and Ts is the symbol period for

normalisation). The physical parameters this depends on is unnecessary for our purposes;

it suffices to know that fd = 10−3 typically represents a fast fading process, and fd = 10−5

typically represents a slow fading process.

Since the channel parameters are random, for any rate of transmission, there is a non-

zero probability that |hl[m]| is very small and leads to errors. Such a situation is called a

deep fade. In fast fading channels, since we go through many independent fades over the

duration of a single codeword, it is always likely that at least some of them will not be in

deep fade and the codeword will be recoverable. But in slow fading channels, if the channel

happens to be poor, it will be so over the duration of the entire codeword, making the

message undecodable. Hence fast fading channels allow for better error performance than

slow fading channels.

2.4.3 Diversity and Interleaving

To ensure that the message is recoverable with high probability, we send copies of the same

signal over multiple (independently faded) paths in space, time, and frequency – giving us

diversity. A simple example is to use a repeat each bit a fixed number of times – repetition

coding – but we can do better by exploiting the degrees of freedom of the channel.

Quantitatively, we define the diversity gain or simply diversity d of a codeword trans-

mitted over a channel with some SNR as follows. It can be shown that the plot of the error

probability (bit error rate (BER)) with the SNR becomes nearly linear at high SNR values.

The slope of this line is taken to be the diversity (for a channel with no diversity, Pe is

13



Chapter 2: Background and Prior Work

observed to be ≈ 1
SNR

, i.e. d = 1).

d = − lim
SNR→∞

logPe
log SNR

(2.8)

Increasing the diversity can be done by a combination of convolutional codes with inter-

leaving, which is the process of re-arranging the bits so that those that are close to each other

originally are now spaced apart. This is done by writing the bits into a matrix row-wise and

reading from it column-wise. Let the codelength be n and let the interleaving depth be d,

such that n = kd (all positive integers). We write the input codeword x row-wise into a

d×k matrix A and read it column-wise to obtain the interleaved codeword x̃. Thus we have

convolutional codes which spread a bit over adjacent bit positions, followed by interleaving

to disperse these copies over far-off, independent fades.

Figure 2.5: How interleaving helps ensure that at least some copies do not pass through deep
fades, by passing multiple copied through independent fades [13]
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2.4.4 Existing Work on SC-LDPC Codes Over Fading Channels

There has been some investigation into the performance of SC-LDPC codes over fading chan-

nels. Najeeb ul Hassan et al. [8] show that we can achieve remarkable diversity improvement

by using SC-LDPC codes over block faded channels, but this is not a realistic representation

of a practical fading channel. Further, there is no mention of interleaving or the latency in-

troduced by the large blocklengths. There are a few works [14, 15] which look at interleaved

SC-LDPC codes over continuously-varying fading channels, but they consider only uncorre-

lated, fast fading channels. We look to extend the study of interleaved SC-LDPC codes to

correlated fading channels, and also study the effect of the speed of channel variation on the

performance (Sec. 3.1).

2.5 Windowed Decoding

Recall from the section on BP decoding that the algorithm requires the knowledge of all bits

in the received codeword before it can start decoding. This leads to a large latency when used

in practical applications. A simple, low-complexity way to reduce this latency is by using a

windowed decoder (WD). The idea behind this is straightforward – instead of performing BP

decoding on the entire parity-check matrix, fix a window length W and perform the same

BP algorithm over subcodes containing only W of the underlying protographs (sections),

as opposed to all L + w. Start from the first W sections, then slide over by one when no

more decoding can be done in the first section (completely decoded or no more improvement

possible), and repeat until the last section is reached. Fig. 2.6 shows the region being looked

at by the windowed decoder at an intermediate instant. The procedure above allows us to

achieve a latency that is a W
L

fraction of the usual BP decoder.

2.5.1 Existing Work

It has been shown that the performance of the WD very quickly approaches that of the
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full-length BP decoder over binary erasure channels [9, 10] (exponentially fast in W ), but

it is sub-optimal in general. Attempts at extending this analysis to fading channels have

been restricted to block fading channels [16], and to IID fading channels [15] where the

WD is used to provide latency-efficient implementations, but there is no analysis of the

variation in performance with the window length W . We will study the WD performance

over continuously-varying, correlated fading channels, for different values of W and see how

the performance scales qualitatively (Sec. 3.2).

Figure 2.6: The windowed decoder in action over an M -lifted C(J,K, L) code. The green
represents the processed bits – they will not be considered in further decoding. ms here is
the coupling width w. (J ′, K ′) is (J,K) divided by their greatest common divisor (GCD).
The area in blue is the subcode on which BP is currently being performed. The red area is
the bits that are still involved in the region through equations. [9]
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Our Results

We first look at an application of block-interleaved SC-LDPC codes over continuously-varying

fading channels, subjected to a latency constraint. This shows us how much we can possibly

improve our code performance, while still being practically relevant. We then look at the

performance of a sliding windowed decoder which gives a small decoding latency, and see how

much of the performance improvement obtained thanks to spatial coupling is still retained.

3.1 Over Fading Channels With Interleaving

We have seen in Sec. 2.4.3 that interleaved SC-LDPC codes are expected to do well over

fading channels – we now verify that this does indeed happen for continuously-varying fading

channels.

We study the performance of SC-LDPC codes of different blocklengths over continuously-

varying fading channels of different channel variation speeds (fd). If the codewords are

(block) interleaved before transmission, the error performance improves on increasing the

interleaving depth, at the cost of decoding latency. A higher blocklength suffers from a larger

latency for the same interleaving depth. Hence we study, subject to a latency constraint, the

trade-off between the maximum interleaving depth and blocklength to obtain the highest

diversity.

17
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3.1.1 The Trade-off Involved

An input codeword x̃ of blocklength n is interleaved with interleaving depth d to obtain the

interleaved codeword x. Define the latency as the maximum distance between the position

of a bit in x̃ and in x. It is easy to check that this maximum occurs at the last element of the

first row in the d× k matrix A (as in Sec. 2.4.3). The position of this bit in x̃ is k, and in x

is n−d+1. The difference, hence the latency L = n−d−k+1 = (k−1)(d−1). We restrict

ourselves to interleaving depths under
√
n, giving us a monotonically increasing relation

between d and L. A latency constraint is then equivalent to a maximum interleaving depth

for a given blocklength. Additionally, given a fixed interleaving depth, a larger blocklength

results in higher latency. We have two opposing phenomena that give us room for a trade-off.

3.1.2 Problem Setting

Suppose we are transmitting at a speed of 10 mega bits per second (Mbps), and are con-

strained to have a latency of under 1 ms, equivalent to 10× 106 bps × 1× 10−3 s = 10, 000

bits. For a code with length n, let d∗ be the maximum interleaving depth such that this

latency constraint is satisfied. We simulate BPSK modulated SC-LDPC codes of different

blocklengths over fading channels with fd = 10−3, 10−4, 10−5 (fast, moderate, slow fading

resp.), both without interleaving and with (at this maximum interleaving depth d∗). The

diversity order is calculated by Eqn. 2.8 as the slope of a least-square error linear fit. As

a reference for maximum diversity, we take codes of the same lengths over an uncorrelated

fading channel.

3.1.3 Results

Below are the plots and data obtained on performing the simulation described above with

M -lifted C(3, 6, 100) codes with w = 2, and M = 51, 52, 55, 60, 75, giving blocklengths

BP implementation, Rayleigh process generated using IT++, http://itpp.sourceforge.net/4.3.1/
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n = 10200, 10400, 11000, 12000, 15000 respectively. The program for the simulation was

written in IT++ and the available BP decoder package was used.

fd = 10−3 :

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

6 8 10 12 14 16 18

B
E
R

SNR (in dB)

n = 15000, with interleaving
n = 15000, no interleaving

n = 12000, with interleaving
n = 12000, no interleaving

n = 11000, with interleaving
n = 11000, no interleaving

n = 10400, with interleaving
n = 10400, no interleaving

n = 10200, with interleaving
n = 10200, no interleaving

fd = 1e-3

Figure 3.1: BER values for C(3, 6, 100) of different blocklengths, without and with interleav-
ing; there is a large improvement with interleaving

n d∗
Diversity

without interleaving with interleaving
15000 3 2.73 6.14
12000 6 2.53 7.69
11000 11 2.31 11.6
10400 26 2.41 15.2
10200 51 2.26 12.5

Table 3.1: Diversity values calculated from Fig. 3.1; observe the rise and fall of diversity
showing the trade-off
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fd = 10−4 :

10-6

10-5

10-4

10-3

10-2

10-1

6 8 10 12 14 16 18

B
E
R

SNR (in dB)

n = 15000, with interleaving
n = 15000, no interleaving

n = 12000, with interleaving
n = 12000, no interleaving

n = 11000, with interleaving
n = 11000, no interleaving

n = 10400, with interleaving
n = 10400, no interleaving

n = 10200, with interleaving
n = 10200, no interleaving

fd = 1e-4

Figure 3.2: BER values for C(3, 6, 100) of different blocklengths, without and with interleav-
ing; the improvement by interleaving has reduced, but there is still a clear advantage

n d∗
Diversity

without interleaving with interleaving
15000 3 1.29 1.81
12000 6 1.05 1.82
11000 11 1.09 2.58
10400 26 1.03 2.99
10200 51 1.08 2.86

Table 3.2: Diversity values calculated from Fig. 3.2; the trade-off is visible
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fd = 10−5 :

10-3

10-2

10-1

6 8 10 12 14 16 18

B
E
R

SNR (in dB)

n = 15000, with interleaving
n = 15000, no interleaving

n = 12000, with interleaving
n = 12000, no interleaving

n = 11000, with interleaving
n = 11000, no interleaving

n = 10400, with interleaving
n = 10400, no interleaving

n = 10200, with interleaving
n = 10200, no interleaving

fd = 1e-5

Figure 3.3: BER values for C(3, 6, 100) of different blocklengths, without and with interleav-
ing; improvement produced by interleaving difficult to observe - almost overlapping (the line
is not monotonic because it has not averaged over enough iterations; this suffices to observe
the general trend)

n d∗
Diversity

without interleaving with interleaving
15000 3 0.9 1.17
12000 6 0.99 1.17
11000 11 0.79 1.13
10400 26 1.1 1.26
10200 51 0.83 1.2

Table 3.3: Diversity values calculated from Fig. 3.3; the trade-off is not very obvious
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Independent Identically Distributed Channel:

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

2 2.5 3 3.5 4 4.5 5 5.5

B
E
R

SNR (in dB)

n = 15000

n = 12000

n = 11000

n = 10400

n = 10200

IID Channel

Figure 3.4: BER values for different blocklengths, over an IID fading channel without inter-
leaving (isolated deep fades corrupted the results at high SNRs; requires more averaging to
get an exact plot)

n Diversity
15000 26
12000 23.9
11000 18.6
10400 24.8
10200 22.3

Table 3.4: Diversity values calculated from Fig. 3.4 (note that the actual diversity values
are higher than these since there is some error due to the flattening of the BER curve at
high SNR values)
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3.1.4 Comments

We see that for a fast fading channel, interleaving helps obtain a large diversity even when

subjected to a latency constraint by exploiting the trade-off and picking an appropriate

blocklength and interleaving depth (as opposed to without interleaving, where there is a

generally decreasing trend as blocklength is reduced). As the channel gets slower, the benefit

due to interleaving becomes lesser and the trade-off is also less clear.

We are able to get closer to the diversity limit given by uncorrelated channels (≈ 15

with interleaving vs. 3 without against 26 for the uncorrelated channel) by picking the

interleaving depth that gives the maximum for fast fading channels, but this gets harder for

slower channels.

3.2 Low-Latency Windowed Decoding

As seen in Sec. 2.5, we can use a windowed decoder that does not have to wait for the

entire message to be received before starting the decoding process. This helps to reduce the

decoding latency, but it comes at the cost of a worse error performance.

3.2.1 Results

We study the performance of the windowed decoder of window length W = 3, 5, 10, 20, 50

on 10-lifted C(3, 6, 200) codes with w = 2, for fast and slow fading channels (fd = 10−3, 10−5

resp.) of different SNRs. The latency is reduced to W
L

times that with the full-length BP

decoder. The BERs obtained are plotted against the SNR values to obtain Fig. 3.5.

3.2.2 Comments

We see that the windowed decoder performs fairly close to the full-length BP decoder even

for small window lengths. In particular, for the slow fading case, W = 5 takes us very close

to the BP performance with a reduction in latency by W
L

= 5
200

= 0.025. For the fast fading
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case, the degradation in performance is greater but we still obtain a similar order of error

performance, with large reduction in latency. This allows us to use larger blocklengths to

obtain better performances without worrying about violating latency constraints.

10-2

10-1

4 6 8 10 12 14 16

B
E
R

SNR (in dB)

BP

W = 3

W = 5

W = 10

W = 20

W = 50

fd = 1e-3

(a) Fast fading channel

10-2

10-1

4 6 8 10 12 14 16

B
E
R

SNR (in dB)

BP

W = 3

W = 5

W = 10

W = 20

W = 50

fd = 1e-5

(b) Slow fading channel

Figure 3.5: Performance of windowed decoder of different window lengths over C(3, 6, 200)
codes

BP implementation on MATLAB adapted from NPTEL: LDPC and Polar Codes in 5G Standard (Dr.
Andrew Thangaraj), https://nptel.ac.in/courses/117/106/108106137/
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Chapter 4

Conclusion

We have seen the construction and performance of Spatially Coupled LDPC Codes (Sec. 2.3).

These codes can achieve significant improvements in performance over conventional LDPC

codes, but realising this improvement requires large blocklengths, which cause large decoding

latencies. To make these theoretical results useful from a practical perspective, we move in

two contrary directions from the starting position, i.e. simply sending interleaved SC-LDPC

codes over fading channels. On one hand, we look at obtaining the best performance with

interleaving, without incurring unacceptably high latency (Sec. 3.1). On the other hand,

we look to reduce the latency using windowed decoding, without suffering from a serious

degradation in error performance (Sec. 3.2).
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