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Approximation perspective

wlog let E[X ] = 0, E[X 2] = 1; G ∼ N (0, 1) independent of Z

I (G , snr)− I (X , snr) = D(
√
snrX + Z ∥

√
snrG + Z )

C (snr)− CH(h, snr) = min
X :

E[X 2]≤1,
H(X )≤h

D(
√
snrX + Z ∥

√
snrG + Z )

optimal X at h: discrete X with H(X ) ≤ h that is closest to N (0, 1 + snr) after
“Gaussian smoothing”
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Estimation perspective

MMSE of estimating X from Y =
√
snrX + Z :

mmse(X , snr) = E
[
(X − E[X | Y ])2

]
I-MMSE relationship: I (X , snr) =

1

2

∫ snr

0
mmse(X , γ) dγ, H(X ) = I (X , “∞”)

mmse(X , γ)

γ

var(X )

snr

??

CH(h, snr) = max

s.t. + ≤ h,

var(X ) ≤ 1

optimal X at snr: indistinguishable at SNR < snr, distinguishable at SNR > snr
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CH as a function of h and snr
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we look at asymptotic behaviour of CH as snr → 0,∞
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High-SNR asymptotics

snr → ∞ : CH(h, snr) → h, so gap of interest = h − CH(h, snr) = H(X ∗)− I (X ∗, snr)

Lemma

For any X with E[X 2] = 1 and finite H(X ), and Z ∼ N (0, 1) independent of X , we have

H(X |
√
snrX + Z ) = exp

(
−snr

dmin(X )2

8
+ o(snr)

)
.

Xh := X with largest dmin among all X with H(X ) = h and E[X 2] = 1

= supported on βZ with pmf PXh
(x) ∝ exp(−λx2)

then “Xh is optimal as snr → ∞”:

for any other X , there exists snr0 such that I (Xh, snr) > I (X , snr) for all snr > snr0

need stronger X ∗ d→ Xh as snr → ∞ to characterize gap in terms of dmin(Xh) = β
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Low SNR asymptotics via Taylor expansion

E[X 2n] < ∞: I (X , snr) =
n−1∑
i=1

ai ,X snri + rn,X snrn

ak,X is a polynomial of {E[X n] : n = 1, . . . , k} for k ≥ 2

for X with E[X 2(k+2)] < ∞:

if E[X n] = E[G n], n = 1, . . . , k and E[X k+1] ̸= E[G k+1],

then I (G , snr)− I (X , snr) = Θ(snrk+1) as snr → 0

kh := maximum number of moments of G matched by X with H(X ) ≤ h

C (snr)− CH(h, snr) = O(snrkh+1)
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Aside: computing integrals numerically

E[g(W )] =

∫
R
g(w)fW (w) dw

≈
m∑
i=1

pig(xi ) = E[g(X )]

if X has E[X n] = E[W n] for n = 1, . . . , k

, then∫
R
g(w)fW (w) dw =

m∑
i=1

pig(xi )

for any polynomial g of degree ≤ k

given continuous W ∼ fW and [C] constraints on discrete X , how large can k[C] be?
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Classical moment problem

Q: Given s1, s2, s3, . . . , does there exist X on R such that E[X n] = sn for n = 1, 2, 3, . . . ?

A: iff Hn(s1, . . . , s2n) =


1 s1 . . . sn
s1 s2 . . . sn+1
...

...
. . .

...
sn sn+1 . . . s2n

 ⪰ 0 for n = 1, 2, 3, . . . ;

infinite support iff Hn ≻ 0 for all n

Q: Given s1, s2, s3, . . . , sk , does there exist X on R such that E[X n] = sn for
n = 1, 2, 3, . . . , k?

A: iff

(k odd) there exists s̃k+1 such that H k+1
2

(s1, . . . , sk , s̃k+1) ⪰ 0

(k even) there exist s̃k+1, s̃k+2 such that H k
2 +1

(s1, . . . , sk , s̃k+1, s̃k+2) ⪰ 0;

finite support: at most ⌊k/2⌋+ 1 atoms (if it exists)
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Truncated moment problem
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Gauss–Hermite quadrature

W = G ∼ N (0, 1) with density φ(w) = 1√
2π

exp(−w2

2 )

“Gauss–Hermite quadrature” XQ
m with m atoms matches 2m − 1 moments:

atom xi = root of Pm(x) =
(−1)m

φ(x)
dmφ(x)
dxm , with probability pi =

(m−1)!
mP2

m−1(xi )

P1(x), pi

x , xi

P2(x), pi

x , xi

P3(x), pi

x , xi

P4(x), pi

x , xi

P5(x), pi

x , xi

E[X ] = 0 E[X 2] = 1

E[X 3] = 0 E[X 4] = 3

E[X 5] = 0 E[X 6] = 15

E[X 7] = 0 E[X 8] = 105

E[X 9] = 0E[X 10] ̸= 1155

optimal trade-off of atoms to moments matched, but H(XQ
m ) ≈ 1

2 logm → ∞
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E[X 5] = 0 E[X 6] = 15

E[X 7] = 0 E[X 8] = 105

E[X 9] = 0E[X 10] ̸= 1155

optimal trade-off of atoms to moments matched, but H(XQ
m ) ≈ 1

2 logm → ∞
9 / 13



Only three moments can be matched with small entropy

Theorem

For any continuous W , there exists ηW ∈ (0, 12) such that

(i) if X has E[X n] = E[W n] for n = 1, 2, 3, 4, then H(X ) ≥ h2(ηW ).

(ii) for any h > 0, there is X with H(X ) ≤ h and E[X n] = E[W n] for n = 1, 2, 3.

Proof idea

H(X ) ≤ h < log 2 ⇐⇒ X =

{
X̃ w.p. ϵ < 1/2

x0 w.p. 1− ϵ > 1/2

need E[X̃ n] = sn := 1
ϵ (E[W

n]− (1− ϵ)xn0 )

check: s1, . . . , s4 “valid” iff ϵ > ηW , but s1, s2, s3 always “valid”

Corollary

ηG = 1
3

, so for h < h2(
1
3), as snr → 0, C (snr)− CH(h, snr) = O(snr4).
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(ii) for any h > 0, there is X with H(X ) ≤ h and E[X n] = E[W n] for n = 1, 2, 3.

For symmetric W ,

ηW =


E[W 2]2

E[X 4]
if E[W 2]2

E[X 4]
≤ 1

3 ,

5E[W 2]2 − E[W 4]

9E[W 2]2 − E[W 4]
if E[W 2]2

E[X 4]
> 1

3 .

ηW

E[W 2]2

E[W 4]0 1
3

1

1
3

1
2

h2(
1
3)

log 2

ηW , h2(ηW )
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“Application”: Testing discrete against Gaussian in high noise

observe n i.i.d. samples Yi = Xi + Zi

with Zi ∼ Z ∼ N (0, σ2) independent of Xi , σ → ∞

H = 0 : Xi ∼ X discrete with H(X ) ≤ h

H = 1 : Xi ∼ G ∼ N (0, 1)

}

decide Ĥ ∈ {0, 1} from Y n

type-I error: Pr{Ĥ = 1 | H = 0} and type-II error: Pr{Ĥ = 0 | H = 1}

Stein regime:
type-I error ≤ ϵ < 1

and type-II error ≤ exp [−nDKL(X + Z ∥G + Z ) + o(n)]

worst-case exponent = min
X :H(X )≤h

DKL(X + Z ∥G + Z )

= Θ
(

1
σ8

)
for h < h2(

1
3)

proof: Taylor expansion, kth term depends on first k moments, can match only 3 moments
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Stein regime:
type-I error ≤ ϵ < 1 and type-II error ≤ exp [−nDKL(X + Z ∥G + Z ) + o(n)]

worst-case exponent = min
X :H(X )≤h

DKL(X + Z ∥G + Z )

= Θ
(

1
σ8

)
for h < h2(

1
3)

proof: Taylor expansion, kth term depends on first k moments, can match only 3 moments

12 / 13



“Application”: Testing discrete against Gaussian in high noise

observe n i.i.d. samples Yi = Xi + Zi with Zi ∼ Z ∼ N (0, σ2) independent of Xi , σ → ∞

H = 0 : Xi ∼ X discrete with H(X ) ≤ h

H = 1 : Xi ∼ G ∼ N (0, 1)

}
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Stein regime:
type-I error ≤ ϵ < 1 and type-II error ≤ exp [−nDKL(X + Z ∥G + Z ) + o(n)]

worst-case exponent = min
X :H(X )≤h

DKL(X + Z ∥G + Z ) = Θ
(

1
σ8

)
for h < h2(

1
3)

proof: Taylor expansion, kth term depends on first k moments, can match only 3 moments

12 / 13



Summary

entropy-constrained Gaussian channel

capacity CH(h, snr)

snr → 0, 0 < h < h2(
1
3): CH(h, snr) = C (snr)−O(snr4)

, via entropy-constrained version
of truncated moment problem

for any continuous distribution, only three moments can be matched by a discrete
distribution of sufficiently small entropy

A.G., S.Shamai, E.Telatar, “On Entropy-Constrained Gaussian Channel Capacity via the Moment Problem.”
— ISIT 2025
— INFORMS APS 2025
— arXiv:2501.13814

snr → ∞: “discrete Gaussian” seems to be “optimal”

Thank you!
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