Entropy-Constrained Gaussian Channel Capacity

Adway Girish Information theory lab, EPFL

October 30, 2025 SiA group meeting

Outline

Entropy-constrained Gaussian channel

4 High-SNR asymptotics

3 Low-SNR asymptotics via moment problem

Outline

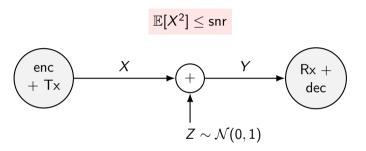
Entropy-constrained Gaussian channel

2 High-SNR asymptotics

3 Low-SNR asymptotics via moment problem

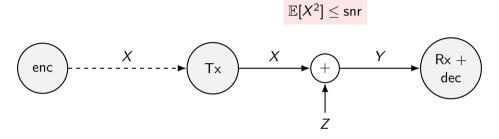
Gaussian channel

Gaussian channel



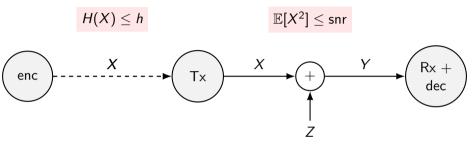
$$C(\mathsf{snr}) = \max_{X: \mathbb{E}[X^2] \leq \mathsf{snr}} I(X; X + Z) = \frac{1}{2} \log(1 + \mathsf{snr})$$

Gaussian channel



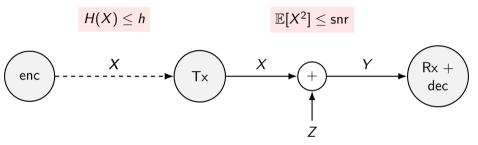
$$C(\mathsf{snr}) = \max_{X: \mathbb{E}[X^2] \leq \mathsf{snr}} I(X; X + Z) = \frac{1}{2} \log(1 + \mathsf{snr})$$

Entropy-constrained Gaussian channel



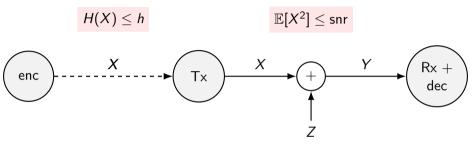
$$\begin{split} C(\mathsf{snr}) &= \max_{X: \mathbb{E}[X^2] \leq \mathsf{snr}} I(X; X + Z) = \frac{1}{2} \log(1 + \mathsf{snr}) \\ C_H(h, \mathsf{snr}) &= \max_{X: \frac{\mathbb{E}[X^2] \leq \mathsf{snr}}{H(X) \leq h}} I(X; X + Z) \end{split}$$

Entropy-constrained Gaussian channel



$$\begin{split} C(\mathsf{snr}) &= \max_{X: \mathbb{E}[X^2] \leq \mathsf{snr}} I(X; X + Z) = \frac{1}{2} \log(1 + \mathsf{snr}) \\ C_H(h, \mathsf{snr}) &= \max_{X: \frac{\mathbb{E}[X^2] \leq \mathsf{snr}}{H(X) \leq h}} I(X; X + Z) = \max_{X: \frac{\mathbb{E}[X^2] \leq 1}{H(X) \leq h}} I(X; \sqrt{\mathsf{snr}}X + Z) \end{split}$$

Entropy-constrained Gaussian channel



$$\begin{split} C(\mathsf{snr}) &= \max_{X: \mathbb{E}[X^2] \leq \mathsf{snr}} I(X; X + Z) = \tfrac{1}{2} \log(1 + \mathsf{snr}) \\ C_H(h, \mathsf{snr}) &= \max_{X: \overset{\mathbb{E}[X^2] \leq \mathsf{snr}}{H(X) \leq h}} I(X; X + Z) = \max_{X: \overset{\mathbb{E}[X^2] \leq 1}{H(X) \leq h}} \underbrace{I(X; \sqrt{\mathsf{snr}}X + Z)}_{I(X, \mathsf{snr})} \end{split}$$

ullet wlog let $\mathbb{E}[X]=0$, $\mathbb{E}[X^2]=1$; $G\sim\mathcal{N}(0,1)$ independent of Z

- wlog let $\mathbb{E}[X] = 0$, $\mathbb{E}[X^2] = 1$; $G \sim \mathcal{N}(0,1)$ independent of Z
- $I(G, \operatorname{snr}) I(X, \operatorname{snr}) = D(\sqrt{\operatorname{snr}}X + Z \parallel \sqrt{\operatorname{snr}}G + Z)$

- wlog let $\mathbb{E}[X] = 0$, $\mathbb{E}[X^2] = 1$; $G \sim \mathcal{N}(0,1)$ independent of Z
- $I(G, \operatorname{snr}) I(X, \operatorname{snr}) = D(\sqrt{\operatorname{snr}}X + Z \parallel \sqrt{\operatorname{snr}}G + Z)$
- $\bullet C(\mathsf{snr}) C_{\mathcal{H}}(h,\mathsf{snr}) = \min_{\substack{X : \mathbb{E}[X^2] \leq 1, \\ \mathcal{H}(X) \leq h}} D(\sqrt{\mathsf{snr}}X + Z \parallel \sqrt{\mathsf{snr}}G + Z)$

- wlog let $\mathbb{E}[X]=0$, $\mathbb{E}[X^2]=1$; $G\sim \mathcal{N}(0,1)$ independent of Z
- $I(G, \operatorname{snr}) I(X, \operatorname{snr}) = D(\sqrt{\operatorname{snr}}X + Z \parallel \sqrt{\operatorname{snr}}G + Z)$
- $\bullet C(\mathsf{snr}) C_{\mathcal{H}}(h,\mathsf{snr}) = \min_{\substack{X : \mathbb{E}[X^2] \leq 1, \\ \mathcal{H}(X) \leq h}} D(\sqrt{\mathsf{snr}}X + Z \parallel \sqrt{\mathsf{snr}}G + Z)$
- optimal X at h: discrete X with $H(X) \leq h$ that is closest to $\mathcal{N}(0, 1 + \mathsf{snr})$ after "Gaussian smoothing"

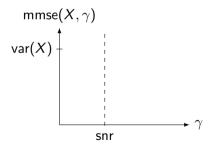
• MMSE of estimating X from $Y = \sqrt{\operatorname{snr}}X + Z$: $\operatorname{mmse}(X,\operatorname{snr}) = \mathbb{E}\left[(X - \mathbb{E}[X\mid Y])^2\right]$

• MMSE of estimating X from $Y = \sqrt{\operatorname{snr}}X + Z$: $\operatorname{mmse}(X,\operatorname{snr}) = \mathbb{E}\left[(X - \mathbb{E}[X\mid Y])^2\right]$

• I-MMSE relationship:
$$I(X, \text{snr}) = \frac{1}{2} \int_0^{\text{snr}} \text{mmse}(X, \gamma) \, d\gamma$$
, $H(X) = I(X, "\infty")$

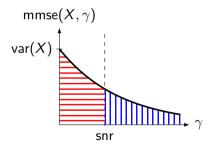
• MMSE of estimating X from $Y = \sqrt{\operatorname{snr}}X + Z$: $\operatorname{mmse}(X,\operatorname{snr}) = \mathbb{E}\left[(X - \mathbb{E}[X\mid Y])^2\right]$

• I-MMSE relationship: $I(X, \operatorname{snr}) = \frac{1}{2} \int_0^{\operatorname{snr}} \operatorname{mmse}(X, \gamma) \, \mathrm{d}\gamma$, $H(X) = I(X, "\infty")$



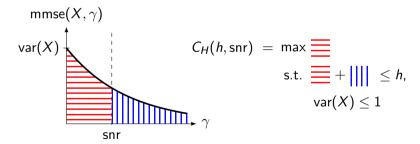
• MMSE of estimating X from $Y = \sqrt{\operatorname{snr}}X + Z$: $\operatorname{mmse}(X,\operatorname{snr}) = \mathbb{E}\left[(X - \mathbb{E}[X\mid Y])^2\right]$

• I-MMSE relationship: $I(X, \operatorname{snr}) = \frac{1}{2} \int_0^{\operatorname{snr}} \operatorname{mmse}(X, \gamma) \, \mathrm{d}\gamma$, $H(X) = I(X, "\infty")$



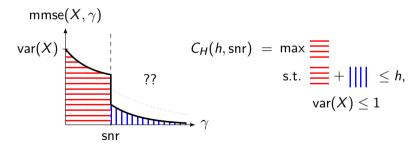
• MMSE of estimating X from $Y = \sqrt{\operatorname{snr}}X + Z$: $\operatorname{mmse}(X,\operatorname{snr}) = \mathbb{E}\left[(X - \mathbb{E}[X\mid Y])^2\right]$

• I-MMSE relationship: $I(X, \operatorname{snr}) = \frac{1}{2} \int_0^{\operatorname{snr}} \operatorname{mmse}(X, \gamma) \, \mathrm{d}\gamma$, $H(X) = I(X, \text{``\infty''})$



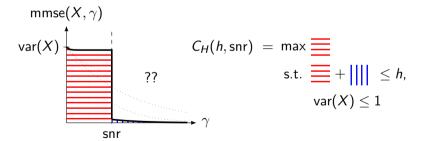
• MMSE of estimating X from $Y = \sqrt{\operatorname{snr}}X + Z$: $\operatorname{mmse}(X,\operatorname{snr}) = \mathbb{E}\left[(X - \mathbb{E}[X\mid Y])^2\right]$

• I-MMSE relationship: $I(X, \operatorname{snr}) = \frac{1}{2} \int_0^{\operatorname{snr}} \operatorname{mmse}(X, \gamma) \, \mathrm{d}\gamma$, $H(X) = I(X, "\infty")$



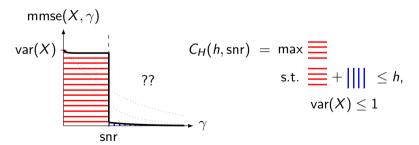
• MMSE of estimating X from $Y = \sqrt{\operatorname{snr}}X + Z$: $\operatorname{mmse}(X,\operatorname{snr}) = \mathbb{E}\left[(X - \mathbb{E}[X\mid Y])^2\right]$

• I-MMSE relationship: $I(X, \operatorname{snr}) = \frac{1}{2} \int_0^{\operatorname{snr}} \operatorname{mmse}(X, \gamma) \, \mathrm{d}\gamma$, $H(X) = I(X, \text{``\infty''})$

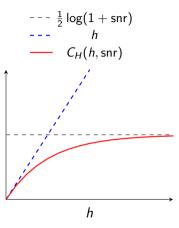


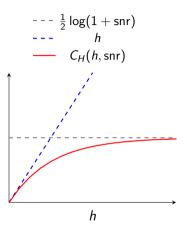
• MMSE of estimating X from $Y = \sqrt{\operatorname{snr}}X + Z$: $\operatorname{mmse}(X,\operatorname{snr}) = \mathbb{E}\left[(X - \mathbb{E}[X\mid Y])^2\right]$

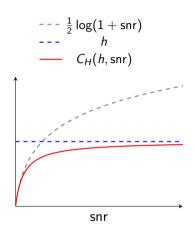
• I-MMSE relationship: $I(X, \operatorname{snr}) = \frac{1}{2} \int_0^{\operatorname{snr}} \operatorname{mmse}(X, \gamma) \, d\gamma$, $H(X) = I(X, "\infty")$

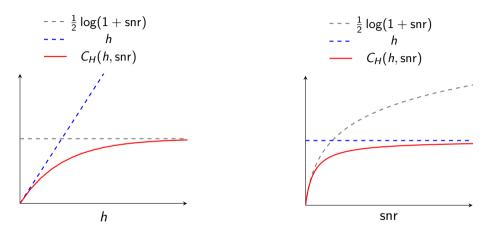


ullet optimal X at snr: indistinguishable at SNR < snr, distinguishable at SNR > snr









we look at asymptotic behaviour of \mathcal{C}_H as snr $\to 0, \infty$

Outline

1 Entropy-constrained Gaussian channel

4 High-SNR asymptotics

3 Low-SNR asymptotics via moment problem

• $\operatorname{snr} \to \infty$: $C_H(h,\operatorname{snr}) \to h$, so gap of interest $= h - C_H(h,\operatorname{snr}) = H(X^*) - I(X^*,\operatorname{snr})$

• $\operatorname{snr} \to \infty$: $C_H(h,\operatorname{snr}) \to h$, so gap of interest $= h - C_H(h,\operatorname{snr}) = H(X^*) - I(X^*,\operatorname{snr})$

Lemma

For any
$$X$$
 with $\mathbb{E}[X^2]=1$ and finite $H(X)$, and $Z\sim \mathcal{N}(0,1)$ independent of X , we have

$$H(X \mid \sqrt{\operatorname{snr}}X + Z) = \exp\left(-\operatorname{snr}\frac{\operatorname{d_{min}}(X)^2}{8} + \operatorname{o}(\operatorname{snr})\right).$$

• $\operatorname{snr} \to \infty$: $C_H(h,\operatorname{snr}) \to h$, so gap of interest $= h - C_H(h,\operatorname{snr}) = H(X^*) - I(X^*,\operatorname{snr})$

Lemma

For any X with $\mathbb{E}[X^2]=1$ and finite H(X), and $Z\sim \mathcal{N}(0,1)$ independent of X, we have

$$H(X \mid \sqrt{\operatorname{snr}}X + Z) = \exp\left(-\operatorname{snr}\frac{\operatorname{d_{min}}(X)^2}{8} + \operatorname{o}(\operatorname{snr})\right).$$

• $X_h := X$ with largest d_{min} among all X with H(X) = h and $\mathbb{E}[X^2] = 1$

• $\operatorname{snr} \to \infty$: $C_H(h,\operatorname{snr}) \to h$, so gap of interest $= h - C_H(h,\operatorname{snr}) = H(X^*) - I(X^*,\operatorname{snr})$

Lemma

For any X with $\mathbb{E}[X^2]=1$ and finite H(X), and $Z\sim\mathcal{N}(0,1)$ independent of X, we have

$$H(X \mid \sqrt{\operatorname{snr}}X + Z) = \exp\left(-\operatorname{snr}\frac{\operatorname{d_{min}}(X)^2}{8} + \operatorname{o}(\operatorname{snr})\right).$$

• $X_h := X$ with largest d_{min} among all X with H(X) = h and $\mathbb{E}[X^2] = 1$ = supported on $\beta \mathbb{Z}$ with pmf $P_{X_h}(x) \propto \exp(-\lambda x^2)$

• $\operatorname{snr} \to \infty$: $C_H(h,\operatorname{snr}) \to h$, so gap of interest $= h - C_H(h,\operatorname{snr}) = H(X^*) - I(X^*,\operatorname{snr})$

Lemma

For any X with $\mathbb{E}[X^2]=1$ and finite H(X), and $Z\sim\mathcal{N}(0,1)$ independent of X, we have

$$H(X \mid \sqrt{\operatorname{snr}}X + Z) = \exp\left(-\operatorname{snr}\frac{\operatorname{d_{min}}(X)^2}{8} + \operatorname{o}(\operatorname{snr})\right).$$

- $X_h := X$ with largest d_{min} among all X with H(X) = h and $\mathbb{E}[X^2] = 1$ = supported on $\beta \mathbb{Z}$ with pmf $P_{X_h}(x) \propto \exp(-\lambda x^2)$
- then " X_h is optimal as snr $\to \infty$ ":

• $\operatorname{snr} \to \infty$: $C_H(h,\operatorname{snr}) \to h$, so gap of interest $= h - C_H(h,\operatorname{snr}) = H(X^*) - I(X^*,\operatorname{snr})$

Lemma

For any X with $\mathbb{E}[X^2]=1$ and finite H(X), and $Z\sim\mathcal{N}(0,1)$ independent of X, we have

$$H(X \mid \sqrt{\operatorname{snr}}X + Z) = \exp\left(-\operatorname{snr}\frac{\operatorname{d_{min}}(X)^2}{8} + \operatorname{o}(\operatorname{snr})\right).$$

- $X_h := X$ with largest d_{min} among all X with H(X) = h and $\mathbb{E}[X^2] = 1$ = supported on $\beta \mathbb{Z}$ with pmf $P_{X_h}(x) \propto \exp(-\lambda x^2)$
- then " X_h is optimal as $\operatorname{snr} \to \infty$ ": for any other X, there exists snr_0 such that $I(X_h,\operatorname{snr}) > I(X,\operatorname{snr})$ for all $\operatorname{snr} > \operatorname{snr}_0$

• $\operatorname{snr} \to \infty$: $C_H(h,\operatorname{snr}) \to h$, so **gap** of interest $= h - C_H(h,\operatorname{snr}) = H(X^*) - I(X^*,\operatorname{snr})$

Lemma

For any X with $\mathbb{E}[X^2]=1$ and finite H(X), and $Z\sim\mathcal{N}(0,1)$ independent of X, we have

$$H(X \mid \sqrt{\operatorname{snr}}X + Z) = \exp\left(-\operatorname{snr}\frac{\operatorname{d_{min}}(X)^2}{8} + \operatorname{o}(\operatorname{snr})\right).$$

- $X_h := X$ with largest d_{min} among all X with H(X) = h and $\mathbb{E}[X^2] = 1$ = supported on $\beta \mathbb{Z}$ with pmf $P_{X_h}(x) \propto \exp(-\lambda x^2)$
- then " X_h is optimal as $\operatorname{snr} \to \infty$ ": for any other X, there exists snr_0 such that $I(X_h,\operatorname{snr}) > I(X,\operatorname{snr})$ for all $\operatorname{snr} > \operatorname{snr}_0$
- need stronger $X^* \stackrel{d}{\to} X_h$ as snr $\to \infty$ to characterize **gap** in terms of $d_{\min}(X_h) = \beta$

Outline

1 Entropy-constrained Gaussian channel

2 High-SNR asymptotics

Opening the state of the sta

•
$$\mathbb{E}[X^{2n}] < \infty$$
: $I(X, \mathsf{snr}) = \sum_{i=1}^{n-1} a_{i,X} \mathsf{snr}^i + r_{n,X} \mathsf{snr}^n$

•
$$\mathbb{E}[X^{2n}] < \infty$$
: $I(X, \mathsf{snr}) = \sum_{i=1}^{n-1} a_{i,X} \mathsf{snr}^i + r_{n,X} \mathsf{snr}^n$

• $a_{k,X}$ is a polynomial of $\{\mathbb{E}[X^n]: n=1,\ldots,k\}$ for $k\geq 2$

•
$$\mathbb{E}[X^{2n}] < \infty$$
: $I(X, \mathsf{snr}) = \sum_{i=1}^{n-1} a_{i,X} \mathsf{snr}^i + r_{n,X} \mathsf{snr}^n$

- $a_{k,X}$ is a polynomial of $\{\mathbb{E}[X^n]: n=1,\ldots,k\}$ for $k\geq 2$
- for X with $\mathbb{E}[X^{2(k+2)}] < \infty$:

•
$$\mathbb{E}[X^{2n}] < \infty$$
: $I(X, \operatorname{snr}) = \sum_{i=1}^{n-1} a_{i,X} \operatorname{snr}^i + r_{n,X} \operatorname{snr}^n$

- $a_{k,X}$ is a polynomial of $\{\mathbb{E}[X^n]: n=1,\ldots,k\}$ for $k\geq 2$
- for X with $\mathbb{E}[X^{2(k+2)}] < \infty$: if $\mathbb{E}[X^n] = \mathbb{E}[G^n]$, $n = 1, \ldots, k$ and $\mathbb{E}[X^{k+1}] \neq \mathbb{E}[G^{k+1}]$,

- $\mathbb{E}[X^{2n}] < \infty$: $I(X, \mathsf{snr}) = \sum_{i=1}^{n-1} a_{i,X} \mathsf{snr}^i + r_{n,X} \mathsf{snr}^n$
- $a_{k,X}$ is a polynomial of $\{\mathbb{E}[X^n]: n=1,\ldots,k\}$ for $k\geq 2$
- for X with $\mathbb{E}[X^{2(k+2)}] < \infty$: if $\mathbb{E}[X^n] = \mathbb{E}[G^n]$, n = 1, ..., k and $\mathbb{E}[X^{k+1}] \neq \mathbb{E}[G^{k+1}]$, then $I(G, \operatorname{snr}) I(X, \operatorname{snr}) = \Theta(\operatorname{snr}^{k+1})$ as $\operatorname{snr} \to 0$

- $\mathbb{E}[X^{2n}] < \infty$: $I(X, \operatorname{snr}) = \sum_{i=1}^{n-1} a_{i,X} \operatorname{snr}^i + r_{n,X} \operatorname{snr}^n$
- $a_{k,X}$ is a polynomial of $\{\mathbb{E}[X^n]: n=1,\ldots,k\}$ for $k\geq 2$
- for X with $\mathbb{E}[X^{2(k+2)}] < \infty$: if $\mathbb{E}[X^n] = \mathbb{E}[G^n]$, n = 1, ..., k and $\mathbb{E}[X^{k+1}] \neq \mathbb{E}[G^{k+1}]$, then $I(G, \operatorname{snr}) I(X, \operatorname{snr}) = \Theta(\operatorname{snr}^{k+1})$ as $\operatorname{snr} \to 0$
- $k_h := \text{maximum number of moments of } G \text{ matched by } X \text{ with } H(X) \leq h$

- $\mathbb{E}[X^{2n}] < \infty$: $I(X, \operatorname{snr}) = \sum_{i=1}^{n-1} a_{i,X} \operatorname{snr}^i + r_{n,X} \operatorname{snr}^n$
- $a_{k,X}$ is a polynomial of $\{\mathbb{E}[X^n]: n=1,\ldots,k\}$ for $k\geq 2$
- for X with $\mathbb{E}[X^{2(k+2)}] < \infty$: if $\mathbb{E}[X^n] = \mathbb{E}[G^n]$, n = 1, ..., k and $\mathbb{E}[X^{k+1}] \neq \mathbb{E}[G^{k+1}]$, then $I(G, \operatorname{snr}) I(X, \operatorname{snr}) = \Theta(\operatorname{snr}^{k+1})$ as $\operatorname{snr} \to 0$
- $k_h := \text{maximum number of moments of } G \text{ matched by } X \text{ with } H(X) \leq h$
- $C(\operatorname{snr}) C_H(h, \operatorname{snr}) = O(\operatorname{snr}^{k_h+1})$

•
$$\mathbb{E}[g(W)] = \int_{\mathbb{R}} g(w) f_W(w) dw$$

•
$$\mathbb{E}[g(W)] = \int_{\mathbb{R}} g(w) f_W(w) dw \approx \sum_{i=1}^m p_i g(x_i)$$

$$\bullet \ \mathbb{E}[g(W)] = \int_{\mathbb{R}} g(w) f_W(w) \, \mathrm{d}w \approx \sum_{i=1}^m p_i g(x_i) = \mathbb{E}[g(X)]$$

$$\bullet \ \mathbb{E}[g(W)] = \int_{\mathbb{R}} g(w) f_W(w) \, \mathrm{d}w \approx \sum_{i=1}^m p_i g(x_i) = \mathbb{E}[g(X)]$$

• if X has $\mathbb{E}[X^n] = \mathbb{E}[W^n]$ for $n = 1, \dots, k$

$$\bullet \ \mathbb{E}[g(W)] = \int_{\mathbb{R}} g(w) f_W(w) \, \mathrm{d} w \approx \sum_{i=1}^m p_i g(x_i) = \mathbb{E}[g(X)]$$

ullet if X has $\mathbb{E}[X^n]=\mathbb{E}[W^n]$ for $n=1,\ldots,k$, then

$$\int_{\mathbb{R}} g(w) f_W(w) dw = \sum_{i=1}^m p_i g(x_i)$$

for any polynomial g of degree $\leq k$

$$\bullet \ \mathbb{E}[g(W)] = \int_{\mathbb{R}} g(w) f_W(w) \, \mathrm{d} w \approx \sum_{i=1}^m p_i g(x_i) = \mathbb{E}[g(X)]$$

ullet if X has $\mathbb{E}[X^n]=\mathbb{E}[W^n]$ for $n=1,\ldots,k$, then

$$\int_{\mathbb{R}} g(w) f_W(w) dw = \sum_{i=1}^m p_i g(x_i)$$

for any polynomial g of degree $\leq k$

• given continuous $W \sim f_W$ and [C] constraints on discrete X, how large can $k_{\text{[C]}}$ be?

• Q: Given s_1, s_2, s_3, \ldots , does there exist X on $\mathbb R$ such that $\mathbb E[X^n] = s_n$ for $n = 1, 2, 3, \ldots$?

• Q: Given s_1, s_2, s_3, \ldots , does there exist X on $\mathbb R$ such that $\mathbb E[X^n] = s_n$ for $n = 1, 2, 3, \ldots$?

A: iff
$$\mathsf{H}_n(s_1,\ldots,s_{2n})=egin{pmatrix}1&s_1&\ldots&s_n\\s_1&s_2&\ldots&s_{n+1}\\\vdots&\vdots&\ddots&\vdots\\s_n&s_{n+1}&\ldots&s_{2n}\end{pmatrix}\succeq 0 \text{ for } n=1,2,3,\ldots$$

• Q: Given s_1, s_2, s_3, \ldots , does there exist X on $\mathbb R$ such that $\mathbb E[X^n] = s_n$ for $n = 1, 2, 3, \ldots$?

A: iff
$$H_n(s_1, ..., s_{2n}) = \begin{pmatrix} 1 & s_1 & ... & s_n \\ s_1 & s_2 & ... & s_{n+1} \\ \vdots & \vdots & \ddots & \vdots \\ s_n & s_{n+1} & ... & s_{2n} \end{pmatrix} \succeq 0 \text{ for } n = 1, 2, 3, ...;$$

infinite support iff $H_n > 0$ for all n

• Q: Given s_1, s_2, s_3, \ldots , does there exist X on $\mathbb R$ such that $\mathbb E[X^n] = s_n$ for $n = 1, 2, 3, \ldots$?

A: iff
$$H_n(s_1,\ldots,s_{2n})=\begin{pmatrix}1&s_1&\ldots&s_n\\s_1&s_2&\ldots&s_{n+1}\\\vdots&\vdots&\ddots&\vdots\\s_n&s_{n+1}&\ldots&s_{2n}\end{pmatrix}\succeq 0$$
 for $n=1,2,3,\ldots;$

infinite support iff $H_n \succ 0$ for all n

• Q: Given $s_1, s_2, s_3, \ldots, s_k$, does there exist X on \mathbb{R} such that $\mathbb{E}[X^n] = s_n$ for $n = 1, 2, 3, \ldots, k$?

• Q: Given s_1, s_2, s_3, \ldots , does there exist X on $\mathbb R$ such that $\mathbb E[X^n] = s_n$ for $n = 1, 2, 3, \ldots$?

A: iff
$$H_n(s_1,\ldots,s_{2n}) = \begin{pmatrix} 1 & s_1 & \ldots & s_n \\ s_1 & s_2 & \ldots & s_{n+1} \\ \vdots & \vdots & \ddots & \vdots \\ s_n & s_{n+1} & \ldots & s_{2n} \end{pmatrix} \succeq 0 \text{ for } n = 1,2,3,\ldots;$$

infinite support iff $H_n \succ 0$ for all n

Q: Given s₁, s₂, s₃,..., s_k, does there exist X on ℝ such that E[Xⁿ] = s_n for n = 1, 2, 3,..., k?
A: iff (k odd)
(k even)

• Q: Given s_1, s_2, s_3, \ldots , does there exist X on $\mathbb R$ such that $\mathbb E[X^n] = s_n$ for $n = 1, 2, 3, \ldots$?

A: iff
$$H_n(s_1,\ldots,s_{2n})=\begin{pmatrix}1&s_1&\ldots&s_n\\s_1&s_2&\ldots&s_{n+1}\\\vdots&\vdots&\ddots&\vdots\\s_n&s_{n+1}&\ldots&s_{2n}\end{pmatrix}\succeq 0$$
 for $n=1,2,3,\ldots;$

infinite support iff $H_n \succ 0$ for all n

• Q: Given $s_1, s_2, s_3, \ldots, s_k$, does there exist X on \mathbb{R} such that $\mathbb{E}[X^n] = s_n$ for $n = 1, 2, 3, \ldots, \frac{k}{2}$?

A: iff (k odd) there exists \tilde{s}_{k+1} such that $H_{\frac{k+1}{2}}(s_1, \ldots, s_k, \tilde{s}_{k+1}) \succeq 0$ (k even)

• Q: Given s_1, s_2, s_3, \ldots , does there exist X on $\mathbb R$ such that $\mathbb E[X^n] = s_n$ for $n = 1, 2, 3, \ldots$?

A: iff
$$H_n(s_1, ..., s_{2n}) = \begin{pmatrix} 1 & s_1 & ... & s_n \\ s_1 & s_2 & ... & s_{n+1} \\ \vdots & \vdots & \ddots & \vdots \\ s_n & s_{n+1} & ... & s_{2n} \end{pmatrix} \succeq 0 \text{ for } n = 1, 2, 3, ...;$$

infinite support iff $H_n \succ 0$ for all n

• Q: Given $s_1, s_2, s_3, \ldots, s_k$, does there exist X on \mathbb{R} such that $\mathbb{E}[X^n] = s_n$ for $n = 1, 2, 3, \ldots, k$?

A: iff
$$(k \text{ odd})$$
 there exists $\underline{\tilde{s}_{k+1}}$ such that $H_{\frac{k+1}{2}}(s_1,\ldots,s_k,\underline{\tilde{s}_{k+1}})\succeq 0$ $(k \text{ even})$ there exist $\underline{\tilde{s}_{k+1}},\underline{\tilde{s}_{k+2}}$ such that $H_{\frac{k}{2}+1}(s_1,\ldots,s_k,\underline{\tilde{s}_{k+1}},\underline{\tilde{s}_{k+2}})\succeq 0$

• Q: Given s_1, s_2, s_3, \ldots , does there exist X on $\mathbb R$ such that $\mathbb E[X^n] = s_n$ for $n = 1, 2, 3, \ldots$?

A: iff
$$H_n(s_1,\ldots,s_{2n}) = \begin{pmatrix} 1 & s_1 & \ldots & s_n \\ s_1 & s_2 & \ldots & s_{n+1} \\ \vdots & \vdots & \ddots & \vdots \\ s_n & s_{n+1} & \ldots & s_{2n} \end{pmatrix} \succeq 0 \text{ for } n = 1,2,3,\ldots;$$

infinite support iff $H_n \succ 0$ for all n

• Q: Given $s_1, s_2, s_3, \ldots, s_k$, does there exist X on \mathbb{R} such that $\mathbb{E}[X^n] = s_n$ for $n = 1, 2, 3, \ldots, k$?

A: iff
$$(k \text{ odd})$$
 there exists $\tilde{\mathbf{s}}_{k+1}$ such that $\mathbf{H}_{\frac{k+1}{2}}(s_1,\ldots,s_k,\tilde{\mathbf{s}}_{k+1})\succeq 0$ $(k \text{ even})$ there exist $\tilde{\mathbf{s}}_{k+1},\tilde{\mathbf{s}}_{k+2}$ such that $\mathbf{H}_{\frac{k}{2}+1}(s_1,\ldots,s_k,\tilde{\mathbf{s}}_{k+1},\tilde{\mathbf{s}}_{k+2})\succeq 0$;

finite support: at most $\lfloor k/2 \rfloor + 1$ atoms (if it exists)

•
$$W = G \sim \mathcal{N}(0,1)$$
 with density $\varphi(w) = \frac{1}{\sqrt{2\pi}} \exp(-\frac{w^2}{2})$

- $W=G\sim \mathcal{N}(0,1)$ with density $\varphi(w)=rac{1}{\sqrt{2\pi}}\exp(-rac{w^2}{2})$
- "Gauss-Hermite quadrature" $X_m^{\mathbb{Q}}$ with m atoms matches 2m-1 moments:

- $W = G \sim \mathcal{N}(0,1)$ with density $\varphi(w) = \frac{1}{\sqrt{2\pi}} \exp(-\frac{w^2}{2})$
- "Gauss-Hermite quadrature" $X_m^{\mathbb{Q}}$ with m atoms matches 2m-1 moments:

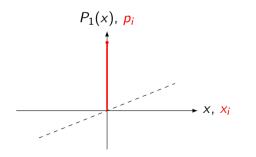
atom
$$x_i$$
 = root of $P_m(x) = \frac{(-1)^m}{\varphi(x)} \frac{d^m \varphi(x)}{dx^m}$,

- $W = G \sim \mathcal{N}(0,1)$ with density $\varphi(w) = \frac{1}{\sqrt{2\pi}} \exp(-\frac{w^2}{2})$
- "Gauss-Hermite quadrature" $X_m^{\mathbb{Q}}$ with m atoms matches 2m-1 moments:

atom
$$x_i = \text{root of } P_m(x) = \frac{(-1)^m}{\varphi(x)} \frac{\mathrm{d}^m \varphi(x)}{\mathrm{d} x^m}, \quad \text{with probability } p_i = \frac{(m-1)!}{m P_{m-1}^2(x_i)}$$

- $W = G \sim \mathcal{N}(0,1)$ with density $\varphi(w) = \frac{1}{\sqrt{2\pi}} \exp(-\frac{w^2}{2})$
- "Gauss-Hermite quadrature" $X_m^{\mathbb{Q}}$ with m atoms matches 2m-1 moments:

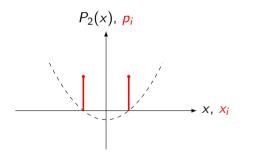
atom
$$x_i = \text{root of } P_m(x) = \frac{(-1)^m}{\varphi(x)} \frac{\mathrm{d}^m \varphi(x)}{\mathrm{d} x^m}, \quad \text{with probability } p_i = \frac{(m-1)!}{m P_{m-1}^2(x_i)}$$



$$\mathbb{E}[X] = 0 \ \mathbb{E}[X^2] \neq 1$$

- $W = G \sim \mathcal{N}(0,1)$ with density $\varphi(w) = \frac{1}{\sqrt{2\pi}} \exp(-\frac{w^2}{2})$
- "Gauss-Hermite quadrature" $X_m^{\mathbb{Q}}$ with m atoms matches 2m-1 moments:

atom
$$x_i = \text{root of } P_m(x) = \frac{(-1)^m}{\varphi(x)} \frac{\mathrm{d}^m \varphi(x)}{\mathrm{d} x^m}, \quad \text{with probability } p_i = \frac{(m-1)!}{m P_{m-1}^2(x_i)}$$



$$\mathbb{E}[X] = 0 \ \mathbb{E}[X^2] = 1$$

 $\mathbb{E}[X^3] = 0 \ \mathbb{E}[X^4] \neq 3$

- $W = G \sim \mathcal{N}(0,1)$ with density $\varphi(w) = \frac{1}{\sqrt{2\pi}} \exp(-\frac{w^2}{2})$
- "Gauss-Hermite quadrature" $X_m^{\mathbb{Q}}$ with m atoms matches 2m-1 moments:

atom
$$x_i = \text{root of } P_m(x) = \frac{(-1)^m}{\varphi(x)} \frac{\mathrm{d}^m \varphi(x)}{\mathrm{d} x^m}, \quad \text{with probability } p_i = \frac{(m-1)!}{m P_{m-1}^2(x_i)}$$

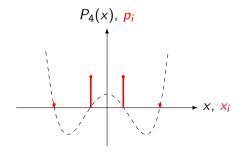


$$\mathbb{E}[X] = 0 \ \mathbb{E}[X^2] = 1$$

 $\mathbb{E}[X^3] = 0 \ \mathbb{E}[X^4] = 3$
 $\mathbb{E}[X^5] = 0 \ \mathbb{E}[X^6] \neq 15$

- $W = G \sim \mathcal{N}(0,1)$ with density $\varphi(w) = \frac{1}{\sqrt{2\pi}} \exp(-\frac{w^2}{2})$
- "Gauss–Hermite quadrature" $X_m^{\mathbb{Q}}$ with m atoms matches 2m-1 moments:

atom
$$x_i = \text{root of } P_m(x) = \frac{(-1)^m}{\varphi(x)} \frac{\mathrm{d}^m \varphi(x)}{\mathrm{d} x^m}, \quad \text{with probability } p_i = \frac{(m-1)!}{m P_{m-1}^2(x_i)}$$



$$\mathbb{E}[X] = 0 \quad \mathbb{E}[X^2] = 1$$

$$\mathbb{E}[X^3] = 0 \quad \mathbb{E}[X^4] = 3$$

$$\mathbb{E}[X^5] = 0 \quad \mathbb{E}[X^6] = 15$$

$$\mathbb{E}[X^7] = 0 \quad \mathbb{E}[X^8] \neq 105$$

- $W = G \sim \mathcal{N}(0,1)$ with density $\varphi(w) = \frac{1}{\sqrt{2\pi}} \exp(-\frac{w^2}{2})$
- "Gauss–Hermite quadrature" $X_m^{\mathbb{Q}}$ with m atoms matches 2m-1 moments:

atom
$$x_i = \text{root of } P_m(x) = \frac{(-1)^m}{\varphi(x)} \frac{\mathrm{d}^m \varphi(x)}{\mathrm{d} x^m}, \quad \text{with probability } p_i = \frac{(m-1)!}{m P_{m-1}^2(x_i)}$$



$$\mathbb{E}[X] = 0 \quad \mathbb{E}[X^2] = 1$$

$$\mathbb{E}[X^3] = 0 \quad \mathbb{E}[X^4] = 3$$

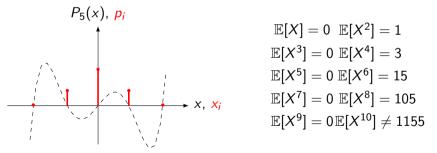
$$\mathbb{E}[X^5] = 0 \quad \mathbb{E}[X^6] = 15$$

$$\mathbb{E}[X^7] = 0 \quad \mathbb{E}[X^8] = 105$$

$$\mathbb{E}[X^9] = 0\mathbb{E}[X^{10}] \neq 1155$$

- $W = G \sim \mathcal{N}(0,1)$ with density $\varphi(w) = \frac{1}{\sqrt{2\pi}} \exp(-\frac{w^2}{2})$
- "Gauss–Hermite quadrature" $X_m^{\mathbb{Q}}$ with m atoms matches 2m-1 moments:

atom
$$x_i = \text{root of } P_m(x) = \frac{(-1)^m}{\varphi(x)} \frac{\mathrm{d}^m \varphi(x)}{\mathrm{d} x^m}, \quad \text{with probability } p_i = \frac{(m-1)!}{m P_{m-1}^2(x_i)}$$



ullet optimal trade-off of atoms to moments matched, but $H(X_m^{\mathbb{Q}})pprox rac{1}{2}\log m o\infty$

Only three moments can be matched with small entropy

Theorem

For any continuous W, there exists $\eta_W \in (0, \frac{1}{2})$ such that

Only three moments can be matched with small entropy

Theorem

For any continuous W, there exists $\eta_W \in (0, \frac{1}{2})$ such that

(i) if
$$X$$
 has $\mathbb{E}[X^n] = \mathbb{E}[W^n]$ for $n = 1, 2, 3, 4$, then $H(X) \ge h_2(\eta_W)$.

Theorem

For any continuous W, there exists $\eta_W \in (0, \frac{1}{2})$ such that

- (i) if X has $\mathbb{E}[X^n] = \mathbb{E}[W^n]$ for n = 1, 2, 3, 4, then $H(X) \ge h_2(\eta_W)$.
- (ii) for any h > 0, there is X with $H(X) \le h$ and $\mathbb{E}[X^n] = \mathbb{E}[W^n]$ for n = 1, 2, 3.

Theorem

For any continuous W, there exists $\eta_W \in (0, \frac{1}{2})$ such that

- (i) if X has $\mathbb{E}[X^n] = \mathbb{E}[W^n]$ for n = 1, 2, 3, 4, then $H(X) \ge h_2(\eta_W)$.
- (ii) for any h > 0, there is X with $H(X) \le h$ and $\mathbb{E}[X^n] = \mathbb{E}[W^n]$ for n = 1, 2, 3.

Theorem

For any continuous W, there exists $\eta_W \in (0, \frac{1}{2})$ such that

- (i) if X has $\mathbb{E}[X^n] = \mathbb{E}[W^n]$ for n = 1, 2, 3, 4, then $H(X) \ge h_2(\eta_W)$.
- (ii) for any h > 0, there is X with $H(X) \le h$ and $\mathbb{E}[X^n] = \mathbb{E}[W^n]$ for n = 1, 2, 3.

•
$$H(X) \le h < \log 2 \iff X = \begin{cases} \tilde{X} & \text{w.p. } \epsilon < 1/2 \\ x_0 & \text{w.p. } 1 - \epsilon > 1/2 \end{cases}$$

Theorem

For any continuous W, there exists $\eta_W \in (0, \frac{1}{2})$ such that

- (i) if X has $\mathbb{E}[X^n] = \mathbb{E}[W^n]$ for n = 1, 2, 3, 4, then $H(X) \ge h_2(\eta_W)$.
- (ii) for any h > 0, there is X with $H(X) \le h$ and $\mathbb{E}[X^n] = \mathbb{E}[W^n]$ for n = 1, 2, 3.

- $H(X) \le h < \log 2 \iff X = \begin{cases} \ddot{X} & \text{w.p. } \epsilon < 1/2 \\ x_0 & \text{w.p. } 1 \epsilon > 1/2 \end{cases}$
- ullet need $\mathbb{E}[ilde{X}^n] = s_n \coloneqq rac{1}{\epsilon}(\mathbb{E}[W^n] (1-\epsilon)x_0^n)$

Theorem

For any continuous W, there exists $\eta_W \in (0, \frac{1}{2})$ such that

- (i) if X has $\mathbb{E}[X^n] = \mathbb{E}[W^n]$ for n = 1, 2, 3, 4, then $H(X) \ge h_2(\eta_W)$.
- (ii) for any h > 0, there is X with $H(X) \le h$ and $\mathbb{E}[X^n] = \mathbb{E}[W^n]$ for n = 1, 2, 3.

- $H(X) \le h < \log 2 \iff X = \begin{cases} \tilde{X} & \text{w.p. } \epsilon < 1/2 \\ x_0 & \text{w.p. } 1 \epsilon > 1/2 \end{cases}$
- ullet need $\mathbb{E}[ilde{X}^n] = s_n \coloneqq rac{1}{\epsilon}(\mathbb{E}[W^n] (1-\epsilon)x_0^n)$
- ullet check: s_1,\ldots,s_4 "valid" iff $\epsilon>\eta_W$, but s_1,s_2,s_3 always "valid"

Theorem

For any continuous W, there exists $\eta_W \in (0, \frac{1}{2})$ such that

- (i) if X has $\mathbb{E}[X^n] = \mathbb{E}[W^n]$ for n = 1, 2, 3, 4, then $H(X) \ge h_2(\eta_W)$.
- (ii) for any h > 0, there is X with $H(X) \le h$ and $\mathbb{E}[X^n] = \mathbb{E}[W^n]$ for n = 1, 2, 3.

Proof idea

- $H(X) \le h < \log 2 \iff X = \begin{cases} \tilde{X} & \text{w.p. } \epsilon < 1/2 \\ x_0 & \text{w.p. } 1 \epsilon > 1/2 \end{cases}$
- need $\mathbb{E}[ilde{X}^n] = s_n \coloneqq rac{1}{\epsilon} (\mathbb{E}[W^n] (1-\epsilon)x_0^n)$
- ullet check: s_1,\ldots,s_4 "valid" iff $\epsilon>\eta_W$, but s_1,s_2,s_3 always "valid"

Corollary

$$\eta_{\it G}={1\over 3}$$

Theorem

For any continuous W, there exists $\eta_W \in (0, \frac{1}{2})$ such that

- (i) if X has $\mathbb{E}[X^n] = \mathbb{E}[W^n]$ for n = 1, 2, 3, 4, then $H(X) \ge h_2(\eta_W)$.
- (ii) for any h > 0, there is X with $H(X) \le h$ and $\mathbb{E}[X^n] = \mathbb{E}[W^n]$ for n = 1, 2, 3.

Proof idea

- $H(X) \le h < \log 2 \iff X = \begin{cases} \tilde{X} & \text{w.p. } \epsilon < 1/2 \\ x_0 & \text{w.p. } 1 \epsilon > 1/2 \end{cases}$
- ullet need $\mathbb{E}[ilde{X}^n] = s_n \coloneqq rac{1}{\epsilon} (\mathbb{E}[W^n] (1-\epsilon) x_0^n)$
- check: s_1, \ldots, s_4 "valid" iff $\epsilon > \eta_W$, but s_1, s_2, s_3 always "valid"

Corollary

$$\eta_G = \frac{1}{3}$$
, so for $h < h_2(\frac{1}{3})$, as snr $\to 0$, $C(\operatorname{snr}) - C_H(h, \operatorname{snr}) = O(\operatorname{snr}^4)$.

Theorem

For any continuous W, there exists $\eta_W \in (0, \frac{1}{2})$ such that

- (i) if X has $\mathbb{E}[X^n] = \mathbb{E}[W^n]$ for n = 1, 2, 3, 4, then $H(X) \ge h_2(\eta_W)$.
- (ii) for any h > 0, there is X with $H(X) \le h$ and $\mathbb{E}[X^n] = \mathbb{E}[W^n]$ for n = 1, 2, 3.

Theorem

For any continuous W, there exists $\eta_W \in (0, \frac{1}{2})$ such that

- (i) if X has $\mathbb{E}[X^n] = \mathbb{E}[W^n]$ for n = 1, 2, 3, 4, then $H(X) \ge h_2(\eta_W)$.
- (ii) for any h > 0, there is X with $H(X) \le h$ and $\mathbb{E}[X^n] = \mathbb{E}[W^n]$ for n = 1, 2, 3.

For symmetric W,

$$\eta_W = egin{cases} rac{\mathbb{E}[W^2]^2}{\mathbb{E}[X^4]} & ext{if } rac{\mathbb{E}[W^2]^2}{\mathbb{E}[X^4]} \leq rac{1}{3}, \ rac{5\mathbb{E}[W^2]^2 - \mathbb{E}[W^4]}{9\mathbb{E}[W^2]^2 - \mathbb{E}[W^4]} & ext{if } rac{\mathbb{E}[W^2]^2}{\mathbb{E}[X^4]} > rac{1}{3}. \end{cases}$$

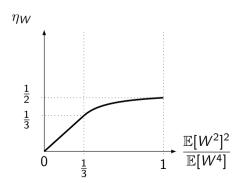
Theorem

For any continuous W, there exists $\eta_W \in (0, \frac{1}{2})$ such that

- (i) if X has $\mathbb{E}[X^n] = \mathbb{E}[W^n]$ for n = 1, 2, 3, 4, then $H(X) \ge h_2(\eta_W)$.
- (ii) for any h > 0, there is X with $H(X) \le h$ and $\mathbb{E}[X^n] = \mathbb{E}[W^n]$ for n = 1, 2, 3.

For symmetric W,

$$\eta_{W} = \begin{cases} \frac{\mathbb{E}[W^{2}]^{2}}{\mathbb{E}[X^{4}]} & \text{if } \frac{\mathbb{E}[W^{2}]^{2}}{\mathbb{E}[X^{4}]} \leq \frac{1}{3}, \\ \\ \frac{5\mathbb{E}[W^{2}]^{2} - \mathbb{E}[W^{4}]}{9\mathbb{E}[W^{2}]^{2} - \mathbb{E}[W^{4}]} & \text{if } \frac{\mathbb{E}[W^{2}]^{2}}{\mathbb{E}[X^{4}]} > \frac{1}{3}. \end{cases}$$



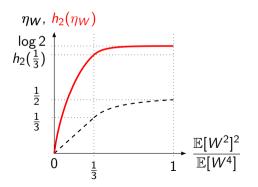
Theorem

For any continuous W, there exists $\eta_W \in (0, \frac{1}{2})$ such that

- (i) if X has $\mathbb{E}[X^n] = \mathbb{E}[W^n]$ for n = 1, 2, 3, 4, then $H(X) \ge h_2(\eta_W)$.
- (ii) for any h > 0, there is X with $H(X) \le h$ and $\mathbb{E}[X^n] = \mathbb{E}[W^n]$ for n = 1, 2, 3.

For symmetric W,

$$\eta_{W} = egin{cases} rac{\mathbb{E}[W^{2}]^{2}}{\mathbb{E}[X^{4}]} & ext{if } rac{\mathbb{E}[W^{2}]^{2}}{\mathbb{E}[X^{4}]} \leq rac{1}{3}, \ rac{5\mathbb{E}[W^{2}]^{2} - \mathbb{E}[W^{4}]}{9\mathbb{E}[W^{2}]^{2} - \mathbb{E}[W^{4}]} & ext{if } rac{\mathbb{E}[W^{2}]^{2}}{\mathbb{E}[X^{4}]} > rac{1}{3}. \end{cases}$$



• observe n i.i.d. samples $Y_i = X_i + Z_i$

• observe n i.i.d. samples $Y_i = X_i + Z_i$ with $Z_i \sim Z \sim \mathcal{N}(0, \sigma^2)$ independent of $X_i, \sigma \to \infty$

• observe n i.i.d. samples $Y_i = X_i + Z_i$ with $Z_i \sim Z \sim \mathcal{N}(0, \sigma^2)$ independent of X_i , $\sigma \to \infty$

$$\left. \begin{array}{l} \mathcal{H} = 0: \quad X_i \sim X \text{ discrete with } H(X) \leq h \\ \mathcal{H} = 1: \quad X_i \sim G \sim \mathcal{N}(0,1) \end{array} \right\}$$

• observe n i.i.d. samples $Y_i = X_i + Z_i$ with $Z_i \sim Z \sim \mathcal{N}(0, \sigma^2)$ independent of X_i , $\sigma \to \infty$

$$\left. \begin{array}{ll} \mathcal{H} = 0: & X_i \sim X \text{ discrete with } H(X) \leq h \\ \mathcal{H} = 1: & X_i \sim G \sim \mathcal{N}(0,1) \end{array} \right\} \text{ decide } \hat{\mathcal{H}} \in \{0,1\} \text{ from } Y^n$$

- observe n i.i.d. samples $Y_i = X_i + Z_i$ with $Z_i \sim Z \sim \mathcal{N}(0, \sigma^2)$ independent of X_i , $\sigma \to \infty$
- $\left. \begin{array}{ll} \mathcal{H} = 0: & X_i \sim X \text{ discrete with } H(X) \leq h \\ \mathcal{H} = 1: & X_i \sim G \sim \mathcal{N}(0,1) \end{array} \right\} \text{ decide } \hat{\mathcal{H}} \in \{0,1\} \text{ from } Y^n$
- ullet type-I error: $\Pr\{\hat{\mathcal{H}}=1\mid \mathcal{H}=0\}$ and type-II error: $\Pr\{\hat{\mathcal{H}}=0\mid \mathcal{H}=1\}$

- observe n i.i.d. samples $Y_i = X_i + Z_i$ with $Z_i \sim Z \sim \mathcal{N}(0, \sigma^2)$ independent of X_i , $\sigma \to \infty$
- $\begin{array}{ll} \boldsymbol{\mathcal{H}} = 0: & X_i \sim X \text{ discrete with } H(X) \leq h \\ \boldsymbol{\mathcal{H}} = 1: & X_i \sim G \sim \mathcal{N}(0,1) \end{array} \right\} \text{ decide } \hat{\mathcal{H}} \in \{0,1\} \text{ from } Y^n$
- ullet type-I error: $\Pr\{\hat{\mathcal{H}}=1\mid \mathcal{H}=0\}$ and type-II error: $\Pr\{\hat{\mathcal{H}}=0\mid \mathcal{H}=1\}$
- Stein regime: type-I error $\leq \epsilon < 1$

- observe n i.i.d. samples $Y_i = X_i + Z_i$ with $Z_i \sim Z \sim \mathcal{N}(0, \sigma^2)$ independent of X_i , $\sigma \to \infty$
- $\left. \begin{array}{ll} \mathcal{H} = 0: & X_i \sim X \text{ discrete with } H(X) \leq h \\ \mathcal{H} = 1: & X_i \sim G \sim \mathcal{N}(0,1) \end{array} \right\} \text{ decide } \hat{\mathcal{H}} \in \{0,1\} \text{ from } Y^n$
- type-I error: $\Pr{\{\hat{\mathcal{H}}=1\mid \mathcal{H}=0\}}$ and type-II error: $\Pr{\{\hat{\mathcal{H}}=0\mid \mathcal{H}=1\}}$
- Stein regime: type-I error $\leq \epsilon < 1$ and type-II error $\leq \exp\left[-n\operatorname{D}_{\mathsf{KL}}(X+Z\parallel G+Z)+\operatorname{o}(n)\right]$

- observe n i.i.d. samples $Y_i = X_i + Z_i$ with $Z_i \sim Z \sim \mathcal{N}(0, \sigma^2)$ independent of X_i , $\sigma \to \infty$
- $\left. \begin{array}{ll} \mathcal{H} = 0: & X_i \sim X \text{ discrete with } H(X) \leq h \\ \mathcal{H} = 1: & X_i \sim G \sim \mathcal{N}(0,1) \end{array} \right\} \text{ decide } \hat{\mathcal{H}} \in \{0,1\} \text{ from } Y^n$
- type-I error: $\Pr{\{\hat{\mathcal{H}}=1\mid \mathcal{H}=0\}}$ and type-II error: $\Pr{\{\hat{\mathcal{H}}=0\mid \mathcal{H}=1\}}$
- Stein regime: type-II error $\leq \epsilon < 1$ and type-II error $\leq \exp\left[-n\operatorname{D}_{\mathsf{KL}}(X+Z\parallel G+Z)+\operatorname{o}(n)\right]$
- worst-case exponent = $\min_{X: H(X) \le h} D_{\mathsf{KL}}(X + Z \parallel G + Z)$

- observe n i.i.d. samples $Y_i = X_i + Z_i$ with $Z_i \sim Z \sim \mathcal{N}(0, \sigma^2)$ independent of X_i , $\sigma \to \infty$
- $\left. \begin{array}{ll} \mathcal{H} = 0: & X_i \sim X \text{ discrete with } H(X) \leq h \\ \mathcal{H} = 1: & X_i \sim G \sim \mathcal{N}(0,1) \end{array} \right\} \text{ decide } \hat{\mathcal{H}} \in \{0,1\} \text{ from } Y^n$
- type-I error: $\Pr{\{\hat{\mathcal{H}}=1\mid \mathcal{H}=0\}}$ and type-II error: $\Pr{\{\hat{\mathcal{H}}=0\mid \mathcal{H}=1\}}$
- Stein regime: type-II error $\leq \epsilon < 1$ and type-II error $\leq \exp \left[-n \operatorname{D}_{\mathsf{KL}} (X + Z \parallel G + Z) + \operatorname{o}(n) \right]$
- worst-case exponent $= \min_{X: H(X) < h} \mathsf{D}_{\mathsf{KL}}(X + Z \parallel G + Z)$ $= \Theta(\frac{1}{\sigma^8}) \text{ for } h < h_2(\frac{1}{3})$

- observe n i.i.d. samples $Y_i = X_i + Z_i$ with $Z_i \sim Z \sim \mathcal{N}(0, \sigma^2)$ independent of X_i , $\sigma \to \infty$
- $\left. \begin{array}{ll} \mathcal{H}=0: & X_i \sim X \text{ discrete with } H(X) \leq h \\ \mathcal{H}=1: & X_i \sim G \sim \mathcal{N}(0,1) \end{array} \right\} \text{ decide } \hat{\mathcal{H}} \in \{0,1\} \text{ from } Y^n$
- type-I error: $\Pr{\{\hat{\mathcal{H}}=1\mid \mathcal{H}=0\}}$ and type-II error: $\Pr{\{\hat{\mathcal{H}}=0\mid \mathcal{H}=1\}}$
- Stein regime: type-I error $\leq \epsilon < 1$ and type-II error $\leq \exp\left[-n\operatorname{D}_{\mathsf{KL}}(X+Z\parallel G+Z) + \operatorname{o}(n)\right]$
- worst-case exponent $= \min_{X: H(X) \le h} \mathsf{D}_{\mathsf{KL}}(X + Z \parallel G + Z)$ $= \Theta(\frac{1}{\sigma^8}) \text{ for } h < h_2(\frac{1}{3})$
- ullet proof: Taylor expansion, $k^{ ext{th}}$ term depends on first k moments, can match only 3 moments

• entropy-constrained Gaussian channel

• entropy-constrained Gaussian channel capacity $C_H(h, snr)$

- ullet entropy-constrained Gaussian channel capacity $C_H(h, snr)$
- $snr \to 0$, $0 < h < h_2(\frac{1}{3})$: $C_H(h, snr) = C(snr) O(snr^4)$

- ullet entropy-constrained Gaussian channel capacity $C_H(h, snr)$
- $\operatorname{snr} \to 0$, $0 < h < h_2(\frac{1}{3})$: $C_H(h, \operatorname{snr}) = C(\operatorname{snr}) O(\operatorname{snr}^4)$, via entropy-constrained version of truncated moment problem

- \bullet entropy-constrained Gaussian channel capacity $C_H(h, snr)$
- $\operatorname{snr} \to 0$, $0 < h < h_2(\frac{1}{3})$: $C_H(h, \operatorname{snr}) = C(\operatorname{snr}) O(\operatorname{snr}^4)$, via entropy-constrained version of truncated moment problem
- for any continuous distribution, only three moments can be matched by a discrete distribution of sufficiently small entropy

- entropy-constrained Gaussian channel capacity $C_H(h, snr)$
- $\operatorname{snr} \to 0$, $0 < h < h_2(\frac{1}{3})$: $C_H(h,\operatorname{snr}) = C(\operatorname{snr}) \operatorname{O}(\operatorname{snr}^4)$, via entropy-constrained version of truncated moment problem
- for any continuous distribution, only three moments can be matched by a discrete distribution of sufficiently small entropy

A.G., S.Shamai, E.Telatar, "On Entropy-Constrained Gaussian Channel Capacity via the Moment Problem."

- ISIT 2025
- INFORMS APS 2025
- arXiv:2501.13814

- \bullet entropy-constrained Gaussian channel capacity $C_H(h, snr)$
- $\operatorname{snr} \to 0$, $0 < h < h_2(\frac{1}{3})$: $C_H(h,\operatorname{snr}) = C(\operatorname{snr}) \operatorname{O}(\operatorname{snr}^4)$, via entropy-constrained version of truncated moment problem
- for any continuous distribution, only three moments can be matched by a discrete distribution of sufficiently small entropy

A.G., S.Shamai, E.Telatar, "On Entropy-Constrained Gaussian Channel Capacity via the Moment Problem."

- ISIT 2025
- INFORMS APS 2025
- arXiv:2501.13814
- snr $\rightarrow \infty$: "discrete Gaussian" seems to be "optimal"

- \bullet entropy-constrained Gaussian channel capacity $C_H(h, snr)$
- $\operatorname{snr} \to 0$, $0 < h < h_2(\frac{1}{3})$: $C_H(h, \operatorname{snr}) = C(\operatorname{snr}) O(\operatorname{snr}^4)$, via entropy-constrained version of truncated moment problem
- for any continuous distribution, only three moments can be matched by a discrete distribution of sufficiently small entropy

A.G., S.Shamai, E.Telatar, "On Entropy-Constrained Gaussian Channel Capacity via the Moment Problem."

- ISIT 2025
- INFORMS APS 2025
- arXiv:2501.13814
- ullet snr $o \infty$: "discrete Gaussian" seems to be "optimal"

Thank you!