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Entropy-constrained Gaussian channel

finite-capacity noiseless link

H(X)<h E[X?] < snr
X X N\ Y Rx +
V4
C = I(X: X +2Z) = Llog(1
(snr) = | max 1(X; X + Z) = 3log(L+ snr)

Cy(hysnr) = max  I(X;X+2Z)= max [(X;v/snrtX + 2)
X_]E[X2]§snr

" H(X)<h X x)<h I(X snr)

1/13



Approximation perspective

2/13



Approximation perspective

o wlog let E[X] =0, E[X?] =1; G ~ N(0,1) independent of Z

2/13



Approximation perspective

o wlog let E[X] =0, E[X?] =1; G ~ N(0,1) independent of Z

e I(G,snr) — I(X,snr) = D(y/sntX + Z || \/snrG + Z)

2/13



Approximation perspective

o wlog let E[X] =0, E[X?] =1; G ~ N(0,1) independent of Z
e I(G,snr) — I(X,snr) = D(y/sntX + Z || \/snrG + Z)

® C(snr) — Cy(h,snr) = min  D(y/snrX + Z || \/snrG + Z)
E[X?]<1,
X: J(X])Eh

2/13



Approximation perspective

o wlog let E[X] =0, E[X?] =1; G ~ N(0,1) independent of Z
e I(G,snr) — I(X,snr) = D(y/sntX + Z || \/snrG + Z)

® C(snr) — Cy(h,snr) = min  D(y/snrX + Z || \/snrG + Z)
E[X?]<1,
X: J(X])Eh

e optimal X at h: discrete X with H(X) < h that is closest to A/(0,1 + snr) after
“Gaussian smoothing”
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Estimation perspective
® MMSE of estimating X from Y = /snrX 4+ Z:
mmse(X,snr) = E [(X —E[X | Y])?]
1 snr
o |I-MMSE relationship: /(X,snr) = 2/ mmse(X,v)dy, H(X)=I(X, “cx")
0
mmse(X, y)

A

var(X) = ‘ Ch(h,snr) = max ==

?? s.t. :E—I—HH < h,

var(X) <1

-
snr

@ optimal X at snr: indistinguishable at SNR < snr, distinguishable at SNR > snr
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Cy as a function of h and snr

--- Llog(1+snr)
h
——  Cy(h,snr)

-~~~ Zlog(1+snr)
h
——  Cpy(h,snr)

snr

we look at asymptotic behaviour of Cy as snr — 0,00
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(X2
H(X | VsnrX + Z) = exp (—snrdmmS(X) +o(snr)> :

e X, = X with largest dmi, among all X with H(X) = h and E[X?] =1
= supported on BZ with pmf Px, (x) o< exp(—Ax?)

@ then “Xj is optimal as snr — o0”:
for any other X, there exists snrq such that /(Xp,snr) > [(X,snr) for all snr > snrg

d . .
@ need stronger X* — X}, as snr — oo to characterize gap in terms of dpmin(Xs) = 3
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Low SNR asymptotics via Taylor expansion

n—1
E[X?"] < oo: I(X,snr) = Za,;x snr' + r, x snr”
i=1

@ ay x is a polynomial of {E[X"] :n=1,... k} for k > 2

for X with E[X2k+2)] < 0o: if E[X"] = E[G"], n=1,..., k and E[X¥*1] #£ E[Gk*1],
then /1(G,snr) — I(X,snr) = @(snrk*1) as snr — 0

@ kp = maximum number of moments of G matched by X with H(X) < h

o [ C(snr) — Cy(h,snr) = O(snrk 1)
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Aside: computing integrals numerically

o Elg(W)) = [ gw)fw(w)dw ~ 3 pig() = Elg(X)
R i=1
o if X has E[X"] = E[W"] for n=1,...,k, then

[ gw)fw(w)dw =" piglx)
R i=1

for any polynomial g of degree < k

@ given continuous W ~ fy, and [C] constraints on discrete X, how large can k¢ be?
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Truncated moment problem

o Q:

o Q:

Given s1, 2,53, ..., does there exist X on R such that E[X"] =s, for n=1,2,3,...7
1 s ... s,
. S1 S ... Sp41
Ciff Ho(st, ..o o0) = © . . _ =0forn=1,2,3,...;
Sn Sn+1 --- S2n
infinite support iff H, > 0 for all n
Given s1, 2,53, ..., Sk, does there exist X on R such that E[X"] = s, for
n=1,23,..., k?
. iff (k odd) there exists 5,1 such that Hyy1(s1,..., Sk Skp1) =0
2
(k even) there exist Sk 1, Sk+2 such that H5+1(51, ooy Sky Ski1s Ski2) = 0;
2
finite support: at most | k/2] + 1 atoms (if it exists)

8/13



Gauss—Hermite quadrature

9/13



Gauss—Hermite quadrature

o W =G ~ N(0,1) with density ¢(w) = \/% exp(—W;)

9/13



Gauss—Hermite quadrature
e W =G~ N(0,1) with density p(w) = \/% exp(—"";)

o "Gauss—Hermite quadrature” XQ with m atoms matches 2m — 1 moments:

9/13



Gauss—Hermite quadrature

e W =G~ N(0,1) with density p(w) = \/% exp(—"";)

o "Gauss—Hermite quadrature” XQ with m atoms matches 2m — 1 moments:

atom x; = root of Pp(x) = % d’;f,(f)a

9/13



Gauss—Hermite quadrature

e W =G~ N(0,1) with density p(w) = \/% exp(—W;)

o "Gauss—Hermite quadrature” XQ with m atoms matches 2m — 1 moments:

— (=17 d7p(x)

atom x; = root of Pp(x) = SOy de (m—1)!

manil(x,-)

with probability p; =

9/13



Gauss—Hermite quadrature

e W =G~ N(0,1) with density p(w) = \/% exp(—"";)

o "Gauss—Hermite quadrature” XQ with m atoms matches 2m — 1 moments:

L _ (=)™ d"(x) . - _ (m=1)!
atom x; = root of Pp(x) = o7 dfm ., with probability p; = P )
Pl(X)v Pi
X E[X]=0 E[X?] #1
— 7 - X, X

9/13



Gauss—Hermite quadrature

e W =G~ N(0,1) with density p(w) = \/% exp(—"";)

o "Gauss—Hermite quadrature” XQ with m atoms matches 2m — 1 moments:

— (=17 d7p(x)

atom x; = root of Pp(x) = SOy de (m—1)!

manil(x,-)

with probability p; =

u E[X] =0 E[X?] =1
E[X3] =0 E[X*] # 3

9/13



Gauss—Hermite quadrature

e W =G~ N(0,1) with density p(w) = \/% exp(—W;)

o "Gauss—Hermite quadrature” XQ with m atoms matches 2m — 1 moments:

atom x; = root of Pp(x) = % dn;f,(,f), with probability p; = %
P3(x), pi
b E[X] =0 E[X?] =1
E[X3] = 0 E[X*] = 3
E[X5] = 0 E[X®] # 15
L AN . X, X;

9/13



Gauss—Hermite quadrature

e W =G~ N(0,1) with density p(w) = \/% exp(—W;)

o "Gauss—Hermite quadrature” XQ with m atoms matches 2m — 1 moments:

atom x; = root of Pp(x) = % dn;f,(,f), with probability p; = —m=H'

mPr2n71(Xi)
P4(X)v Pi
u E[X] =0 E[X?] =1
\\ | E[X3] =0E[X* =3
I I ,’ E[X5] = 0 E[X%] = 15
S AR L xx E[X7] = 0 E[X®] # 105

9/13



Gauss—Hermite quadrature
w) = Zoexp(—%)

o W =G ~ N(0,1) with density ¢(w) =
o "Gauss—Hermite quadrature” XQ with m atoms matches 2m — 1 moments:
— (=17 d7p(x) i ility pr = _(m=1)!
= with probability p; = Pz (x)

p(x) dxm >

atom x; = root of Pp,(x)

Ps(x), pi
b E[X] =0 E[X?] =1
E[X3] =0 E[X* =3
| E[X5] = 0 E[X®] = 15
T I ) I E[X7] = 0 E[X®] = 105
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Gauss—Hermite quadrature
Lexp(—%)

o W =G~ N(0,1) with density p(w) = =

o "Gauss—Hermite quadrature” XQ with m atoms matches 2m — 1 moments:
(m—1)!

— DT ™09 \yith probability p; = P 0a)
m—1\"1

p(x) dxm >

atom x; = root of Pp,(x)

Ps(x), pi
b E[X] =0 E[X?] =1
E[X3] =0 E[X*] =3
| E[X5] = 0 E[X®] = 15
B N A I E[X"] = 0 E[X®] = 105
E[X°] = 0E[X10] # 1155

I
o optimal trade-off of atoms to moments matched, but H(XQ) ~ % log m — oo
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For any continuous W, there exists ny € (0, %) such that
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e observe n i.i.d. samples Y; = X; + Z; with Z; ~ Z ~ N(0,0?) independent of X;, o — oo

H=0: X~ X discrete with H(X) < h decide 71 € 0.1} f o
(]
H=1: Xi~G~N(0,1) ecice oy em

type-l error: Pr{H{ =1|H =0} and type-ll error: Pr{H =0 | H =1}

Stein regime:
type-l error <e <1 and type-ll error < exp[—nDki (X + Z | G+ Z) + o(n)]

t- t= i Dki(X+Z||G+Z =0(%) for h < hy(3
@ worst-case exponen X:IT(I)?)gh kL(X+Z|| G+ 2) (Z5) for h < ho(3)

proof: Taylor expansion, k™ term depends on first k moments, can match only 3 moments
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Summary

entropy-constrained Gaussian channel capacity Cy(h,snr)

snr— 0, 0 < h < h(3): Cu(h,snr) = C(snr) — O(snr*), via entropy-constrained version
of truncated moment problem

for any continuous distribution, only three moments can be matched by a discrete
distribution of sufficiently small entropy

A.G., S.Shamai, E.Telatar, “On Entropy-Constrained Gaussian Channel Capacity via the Moment Problem.”

— ISIT 2025

— INFORMS APS 2025
— arXiv:2501.13814

snr — oo: “discrete Gaussian” seems to be “optimal”

Thank you!
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