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Binary hypothesis testing

H ∈ {0, 1} : Z ∼ PH
Z

; observe Z , declare Ĥ ∈ {0, 1} as function of Z

Type-I error = P0
Z{Ĥ = 1} and Type-II error = P1

Z{Ĥ = 0}

u(Z ) ⪰ v(Z ) :=

Type-I error

Type-II error

0 1
0

1

v
u

with Ĥ function of u(Z ), v(Z ) resp.

u(Z ) ⪰ v(Z ) ⇐⇒ there exists PV |U such that PH
u(Z)

PV |U−−−→ PH
v(Z) for both H = 0, 1
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Z{Ĥ = 1} and Type-II error = P1
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Z{Ĥ = 0}

u(Z ) ⪰ v(Z ) :=

Type-I error

Type-II error

0 1
0

1

v
u
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Binary hypothesis testing, Blackwell order

H ∈ {0, 1} : Z ∼ PH
Z ; observe Z , declare Ĥ ∈ {0, 1} as function of Z

Type-I error = P0
Z{Ĥ = 1} and Type-II error = P1
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(Centralized) hypothesis testing

dec Ĥ

X n

Y n

H ∈ {0, 1} : (Xi ,Yi )
i.i.d.∼ PH

Xi ,Yi ∈ {0, 1} w.p. 1/2

PH{Xi ̸= Yi} = pH

corrH(Xi ,Yi ) = ρH = 1− 2pH

encX

encY

X n ⊕ Y n sufficient, X n ⊕ Y n ⪰ (X n,Y n) ⪰ f (X n,Y n) for any f

Is there a “best” linear code?
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Distributed hypothesis testing: binary inputs

dec Ĥ

X n

Y n

H ∈ {0, 1} : (Xi ,Yi )
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Distributed hypothesis testing: binary inputs, linear codes
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Distributed hypothesis testing: binary inputs, linear codes
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Truncation is sometimes the best linear code

AX n ⊕ AY n ⪰ (AX n,AY n) ⪰ (AX n,BY n) for any A,B, for any ρ0, ρ1 ✓

(same linear code + modulo-2 sum sufficient)

X k ⊕ Y k ⪰ AX n ⊕ AY n for (1) ρ0 = 0 or ρ1 = 0, (3) ρ1 = −ρ0 ✓

(linear codes “bad” — only as good as simple truncation — for some parameters)

ρ0

ρ1

−1 1

−1

1

0

conjecture: X k ⊕ Y k ⪰ AX n ⊕ AY n for all ρ0, ρ1 of opposite signs ?

(linear codes “bad” for testing any positive vs. negative correlation)
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Proof

recall: u(Z ) ⪰ v(Z ) ⇐⇒ there exists PV |U such that PH
u(Z)

PV |U−−−→ PH
v(Z)

explicitly construct channel (that does not depend on H) so that

PH
AX n⊕AY n −→ PH

(AX n,BY n) for any ρ0, ρ1

PH
X k⊕Y k −→ PH

AX n⊕AY n for (1) ρ1 = 0 or ρ0 = 0, (3) ρ1 = −ρ0

conjecture:

−1.0 −0.5 0.0 0.5 1.0
ρ0

−1.0

−0.5

0.0

0.5

1.0

ρ
1

(k, n) = (1, 2)

?
n→∞−−−→ ρ0

ρ1

−1 1

−1

1

0
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Summary

truncation is the best linear code for testing:

(1) for/against independence

(2) opposite correlations of same magnitude

conjecture: also for testing opposite correlations of any magnitude

arXiv:2601.10526

Thank you!
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