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. H PV\U H
o u(Z) = v(Z) <= there exists Pyy such that P}¢ —— P
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Distributed hypothesis testing
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Distributed hypothesis testing: binary inputs, linear codes
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Is there a “best” linear code?
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o conjecture: XK@ Yk = AX" @ AY™" for all pg, p1 of opposite signs
(linear codes “bad” for testing any positive vs. negative correlation)
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Thank you!
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