

Trivial is (Sometimes) Best: Distributed Hypothesis Testing via Linear Codes

Adway Girish

joint work with Robinson Cung and Emre Telatar

EPFL

January 30, 2026
LIDS student conference

Binary hypothesis testing

- $\mathcal{H} \in \{0, 1\} : Z \sim P_Z^{\mathcal{H}}$

Binary hypothesis testing

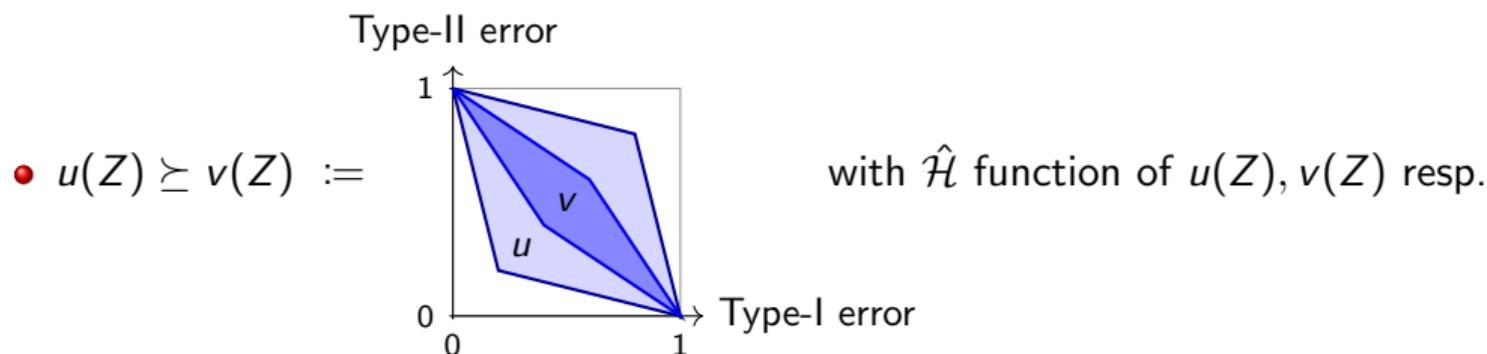
- $\mathcal{H} \in \{0, 1\} : Z \sim P_Z^{\mathcal{H}}$; observe Z , declare $\hat{\mathcal{H}} \in \{0, 1\}$ as function of Z

Binary hypothesis testing

- $\mathcal{H} \in \{0, 1\} : Z \sim P_Z^{\mathcal{H}}$; observe Z , declare $\hat{\mathcal{H}} \in \{0, 1\}$ as function of Z
- Type-I error = $P_Z^0\{\hat{\mathcal{H}} = 1\}$ and Type-II error = $P_Z^1\{\hat{\mathcal{H}} = 0\}$

Binary hypothesis testing, Blackwell order

- $\mathcal{H} \in \{0, 1\} : Z \sim P_Z^{\mathcal{H}}$; observe Z , declare $\hat{\mathcal{H}} \in \{0, 1\}$ as function of Z
- Type-I error = $P_Z^0\{\hat{\mathcal{H}} = 1\}$ and Type-II error = $P_Z^1\{\hat{\mathcal{H}} = 0\}$

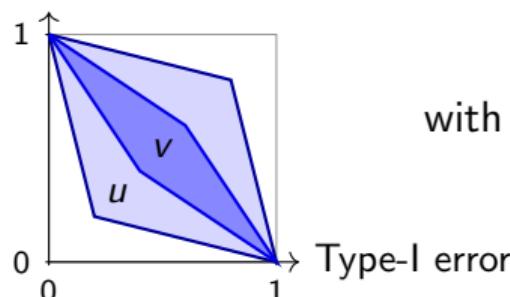


Binary hypothesis testing, Blackwell order

- $\mathcal{H} \in \{0, 1\} : Z \sim P_Z^{\mathcal{H}}$; observe Z , declare $\hat{\mathcal{H}} \in \{0, 1\}$ as function of Z
- Type-I error = $P_Z^0\{\hat{\mathcal{H}} = 1\}$ and Type-II error = $P_Z^1\{\hat{\mathcal{H}} = 0\}$

Type-II error

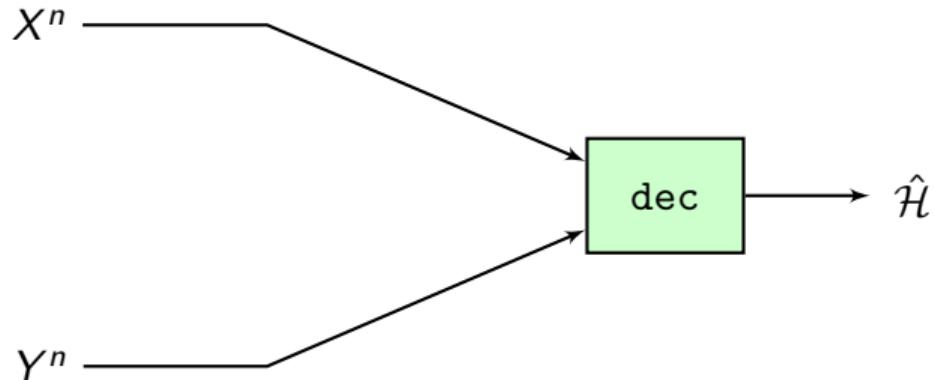
- $u(Z) \succeq v(Z) :=$ with $\hat{\mathcal{H}}$ function of $u(Z), v(Z)$ resp.



- $u(Z) \succeq v(Z) \iff$ there exists $P_{V|U}$ such that $P_{u(Z)}^{\mathcal{H}} \xrightarrow{P_{V|U}} P_{v(Z)}^{\mathcal{H}}$ for both $\mathcal{H} = 0, 1$

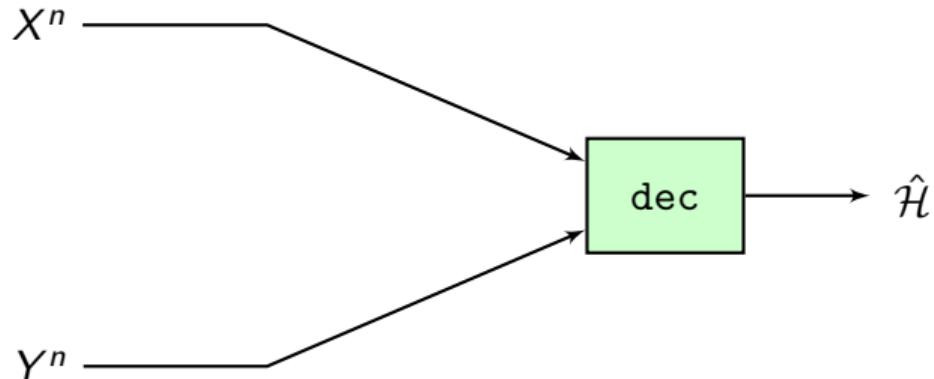
(Centralized) hypothesis testing

$$\mathcal{H} \in \{0, 1\} : (X_i, Y_i) \stackrel{\text{i.i.d.}}{\sim} P^{\mathcal{H}}$$



(Centralized) hypothesis testing

$$\mathcal{H} \in \{0, 1\} : (X_i, Y_i) \stackrel{\text{i.i.d.}}{\sim} P^{\mathcal{H}}$$



$$(X^n, Y^n) \succeq f(X^n, Y^n) \text{ for any } f$$

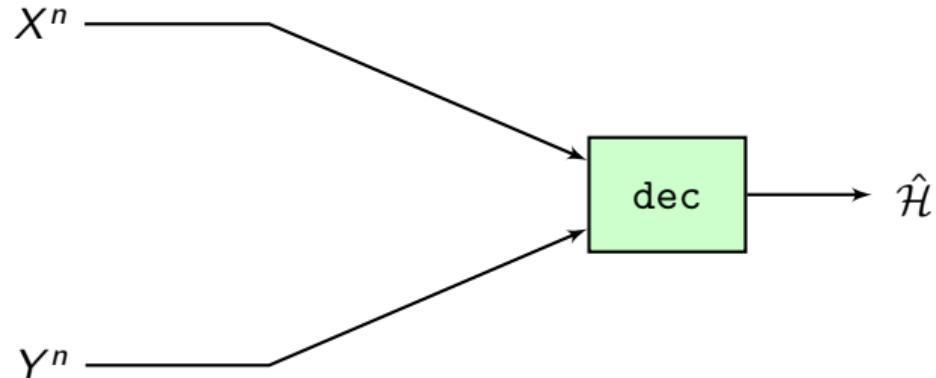
(Centralized) hypothesis testing: binary inputs

$$\mathcal{H} \in \{0, 1\} : (X_i, Y_i) \stackrel{\text{i.i.d.}}{\sim} P^{\mathcal{H}}$$

$$X_i, Y_i \in \{0, 1\} \text{ w.p. } 1/2$$

$$P^{\mathcal{H}}\{X_i \neq Y_i\} = p_{\mathcal{H}}$$

$$\text{corr}_{\mathcal{H}}(X_i, Y_i) = \rho_{\mathcal{H}} = 1 - 2p_{\mathcal{H}}$$



$$(X^n, Y^n) \succeq f(X^n, Y^n) \text{ for any } f$$

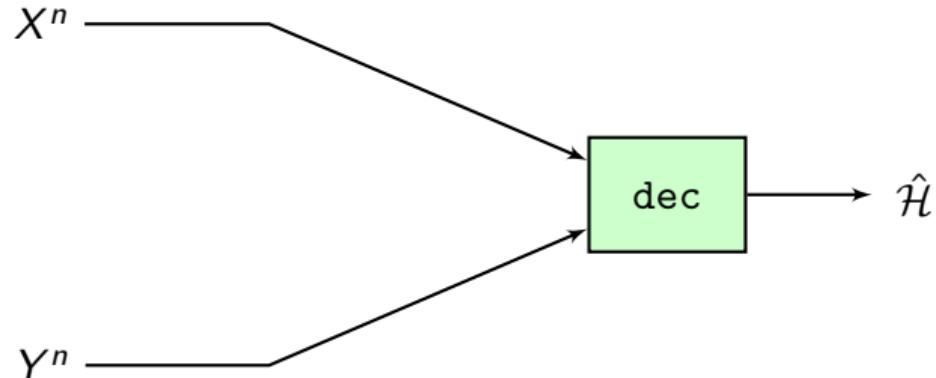
(Centralized) hypothesis testing: binary inputs

$$\mathcal{H} \in \{0, 1\} : (X_i, Y_i) \stackrel{\text{i.i.d.}}{\sim} P^{\mathcal{H}}$$

$$X_i, Y_i \in \{0, 1\} \text{ w.p. } 1/2$$

$$P^{\mathcal{H}}\{X_i \neq Y_i\} = p_{\mathcal{H}}$$

$$\text{corr}_{\mathcal{H}}(X_i, Y_i) = \rho_{\mathcal{H}} = 1 - 2p_{\mathcal{H}}$$



$$X^n \oplus Y^n \text{ sufficient, } X^n \oplus Y^n \succeq (X^n, Y^n) \succeq f(X^n, Y^n) \text{ for any } f$$

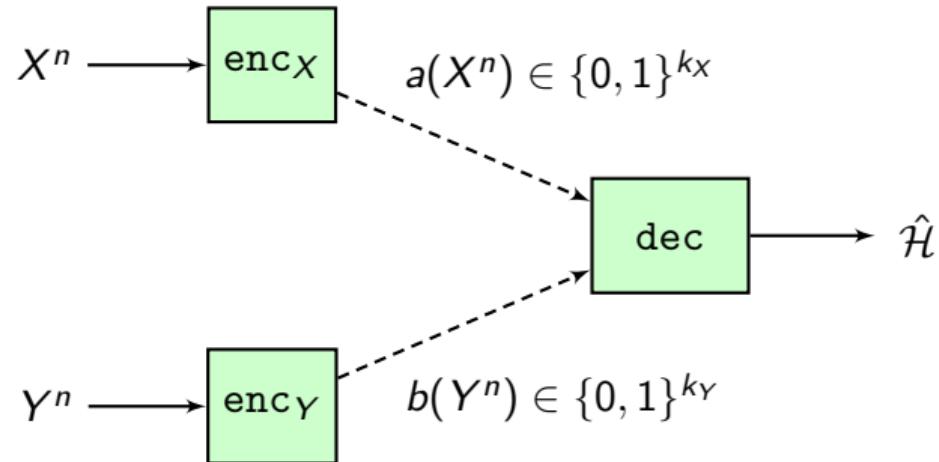
Distributed hypothesis testing: binary inputs

$$\mathcal{H} \in \{0, 1\} : (X_i, Y_i) \stackrel{\text{i.i.d.}}{\sim} P^{\mathcal{H}}$$

$$X_i, Y_i \in \{0, 1\} \text{ w.p. } 1/2$$

$$P^{\mathcal{H}}\{X_i \neq Y_i\} = p_{\mathcal{H}}$$

$$\text{corr}_{\mathcal{H}}(X_i, Y_i) = \rho_{\mathcal{H}} = 1 - 2p_{\mathcal{H}}$$



$$X^n \oplus Y^n \text{ sufficient, } X^n \oplus Y^n \succeq (X^n, Y^n) \succeq f(X^n, Y^n) \text{ for any } f$$

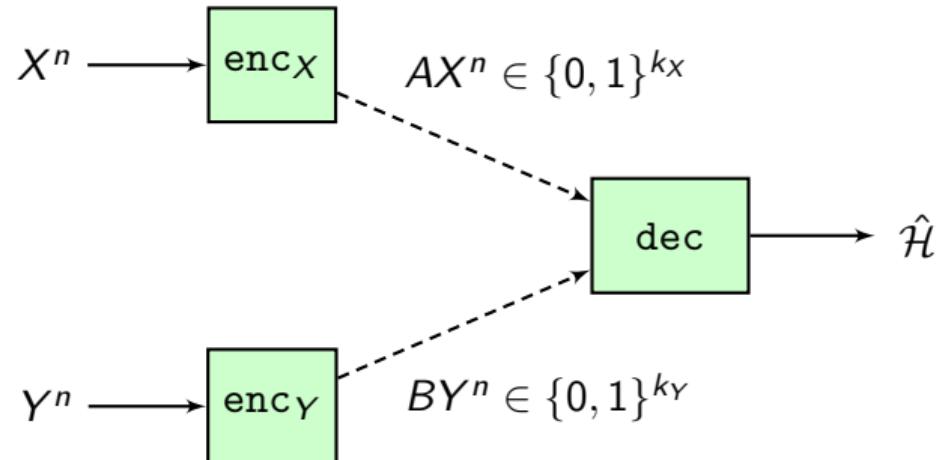
Distributed hypothesis testing: binary inputs, linear codes

$$\mathcal{H} \in \{0, 1\} : (X_i, Y_i) \stackrel{\text{i.i.d.}}{\sim} P^{\mathcal{H}}$$

$$X_i, Y_i \in \{0, 1\} \text{ w.p. } 1/2$$

$$P^{\mathcal{H}}\{X_i \neq Y_i\} = p_{\mathcal{H}}$$

$$\text{corr}_{\mathcal{H}}(X_i, Y_i) = \rho_{\mathcal{H}} = 1 - 2p_{\mathcal{H}}$$



$$X^n \oplus Y^n \text{ sufficient, } X^n \oplus Y^n \succeq (X^n, Y^n) \succeq f(X^n, Y^n) \text{ for any } f$$

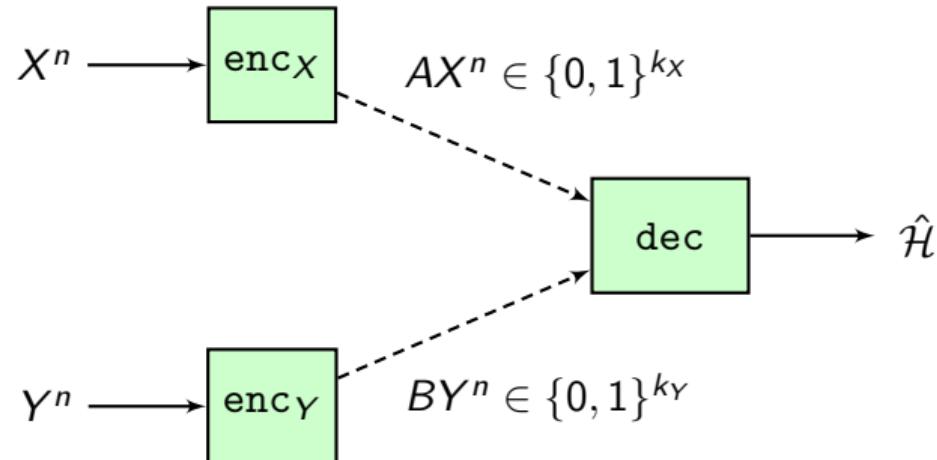
Distributed hypothesis testing: binary inputs, linear codes

$$\mathcal{H} \in \{0, 1\} : (X_i, Y_i) \stackrel{\text{i.i.d.}}{\sim} P^{\mathcal{H}}$$

$$X_i, Y_i \in \{0, 1\} \text{ w.p. } 1/2$$

$$P^{\mathcal{H}}\{X_i \neq Y_i\} = p_{\mathcal{H}}$$

$$\text{corr}_{\mathcal{H}}(X_i, Y_i) = \rho_{\mathcal{H}} = 1 - 2p_{\mathcal{H}}$$



$$X^n \oplus Y^n \text{ sufficient, } X^n \oplus Y^n \succeq (X^n, Y^n) \succeq f(X^n, Y^n) \text{ for any } f$$

Is there a “best” linear code?

Truncation is sometimes the best linear code

Truncation is sometimes the best linear code

- $AX^n \oplus AY^n \succeq (AX^n, AY^n) \succeq (AX^n, BY^n)$ for any A, B , for any ρ_0, ρ_1

✓

Truncation is sometimes the best linear code

- $AX^n \oplus AY^n \succeq (AX^n, AY^n) \succeq (AX^n, BY^n)$ for any A, B , for any ρ_0, ρ_1
(same linear code + modulo-2 sum sufficient)

✓

Truncation is sometimes the best linear code

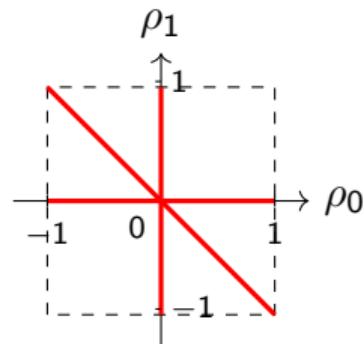
- $AX^n \oplus AY^n \succeq (AX^n, AY^n) \succeq (AX^n, BY^n)$ for any A, B , for any ρ_0, ρ_1 (same linear code + modulo-2 sum sufficient) ✓
- $X^k \oplus Y^k \succeq AX^n \oplus AY^n$ for (1) $\rho_0 = 0$ or $\rho_1 = 0$, (3) $\rho_1 = -\rho_0$ ✓

Truncation is sometimes the best linear code

- $AX^n \oplus AY^n \succeq (AX^n, AY^n) \succeq (AX^n, BY^n)$ for any A, B , for any ρ_0, ρ_1 (same linear code + modulo-2 sum sufficient) ✓
- $X^k \oplus Y^k \succeq AX^n \oplus AY^n$ for (1) $\rho_0 = 0$ or $\rho_1 = 0$, (3) $\rho_1 = -\rho_0$ (linear codes “bad” — only as good as simple truncation — for some parameters) ✓

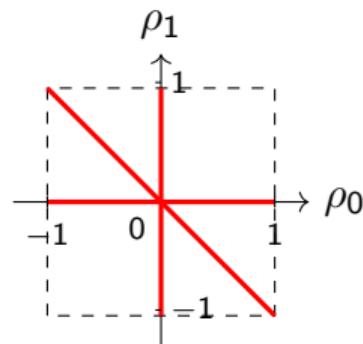
Truncation is sometimes the best linear code

- $AX^n \oplus AY^n \succeq (AX^n, AY^n) \succeq (AX^n, BY^n)$ for any A, B , for any ρ_0, ρ_1 (same linear code + modulo-2 sum sufficient) ✓
- $X^k \oplus Y^k \succeq AX^n \oplus AY^n$ for (1) $\rho_0 = 0$ or $\rho_1 = 0$, (3) $\rho_1 = -\rho_0$ (linear codes “bad” — only as good as simple truncation — for some parameters) ✓



Truncation is sometimes the best linear code

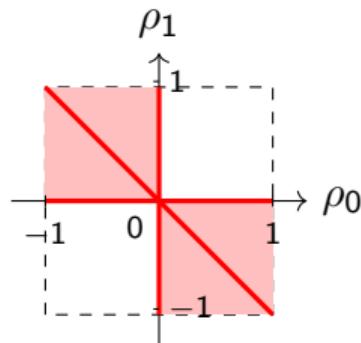
- $AX^n \oplus AY^n \succeq (AX^n, AY^n) \succeq (AX^n, BY^n)$ for any A, B , for any ρ_0, ρ_1 (same linear code + modulo-2 sum sufficient) ✓
- $X^k \oplus Y^k \succeq AX^n \oplus AY^n$ for (1) $\rho_0 = 0$ or $\rho_1 = 0$, (3) $\rho_1 = -\rho_0$ (linear codes “bad” — only as good as simple truncation — for some parameters) ✓



- conjecture: $X^k \oplus Y^k \succeq AX^n \oplus AY^n$ for all ρ_0, ρ_1 of opposite signs ?

Truncation is sometimes the best linear code

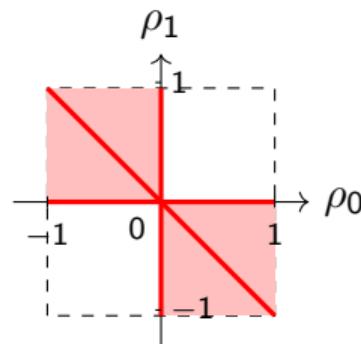
- $AX^n \oplus AY^n \succeq (AX^n, AY^n) \succeq (AX^n, BY^n)$ for any A, B , for any ρ_0, ρ_1 (same linear code + modulo-2 sum sufficient) ✓
- $X^k \oplus Y^k \succeq AX^n \oplus AY^n$ for (1) $\rho_0 = 0$ or $\rho_1 = 0$, (3) $\rho_1 = -\rho_0$ (linear codes “bad” — only as good as simple truncation — for some parameters) ✓



- conjecture: $X^k \oplus Y^k \succeq AX^n \oplus AY^n$ for all ρ_0, ρ_1 of opposite signs ?

Truncation is sometimes the best linear code

- $AX^n \oplus AY^n \succeq (AX^n, AY^n) \succeq (AX^n, BY^n)$ for any A, B , for any ρ_0, ρ_1 (same linear code + modulo-2 sum sufficient) ✓
- $X^k \oplus Y^k \succeq AX^n \oplus AY^n$ for (1) $\rho_0 = 0$ or $\rho_1 = 0$, (3) $\rho_1 = -\rho_0$ (linear codes “bad” — only as good as simple truncation — for some parameters) ✓



- conjecture: $X^k \oplus Y^k \succeq AX^n \oplus AY^n$ for all ρ_0, ρ_1 of opposite signs (linear codes “bad” for testing any positive vs. negative correlation) ?

Proof

Proof

- recall: $u(Z) \succeq v(Z) \iff$ there exists $P_{V|U}$ such that $P_{u(Z)}^{\mathcal{H}} \xrightarrow{P_{V|U}} P_{v(Z)}^{\mathcal{H}}$

Proof

- recall: $u(Z) \succeq v(Z) \iff$ there exists $P_{V|U}$ such that $P_{u(Z)}^{\mathcal{H}} \xrightarrow{P_{V|U}} P_{v(Z)}^{\mathcal{H}}$
- explicitly construct channel (that does not depend on \mathcal{H}) so that

$$P_{AX^n \oplus AY^n}^{\mathcal{H}} \longrightarrow P_{(AX^n, BY^n)}^{\mathcal{H}} \quad \text{for any } \rho_0, \rho_1$$

$$P_{X^k \oplus Y^k}^{\mathcal{H}} \longrightarrow P_{AX^n \oplus AY^n}^{\mathcal{H}} \quad \text{for (1) } \rho_1 = 0 \text{ or } \rho_0 = 0, \text{ (3) } \rho_1 = -\rho_0$$

Proof

- recall: $u(Z) \succeq v(Z) \iff$ there exists $P_{V|U}$ such that $P_{u(Z)}^{\mathcal{H}} \xrightarrow{P_{V|U}} P_{v(Z)}^{\mathcal{H}}$
- explicitly construct channel (that does not depend on \mathcal{H}) so that

$$P_{AX^n \oplus AY^n}^{\mathcal{H}} \longrightarrow P_{(AX^n, BY^n)}^{\mathcal{H}} \quad \text{for any } \rho_0, \rho_1$$

$$P_{X^k \oplus Y^k}^{\mathcal{H}} \longrightarrow P_{AX^n \oplus AY^n}^{\mathcal{H}} \quad \text{for (1) } \rho_1 = 0 \text{ or } \rho_0 = 0, \text{ (3) } \rho_1 = -\rho_0$$

- conjecture:

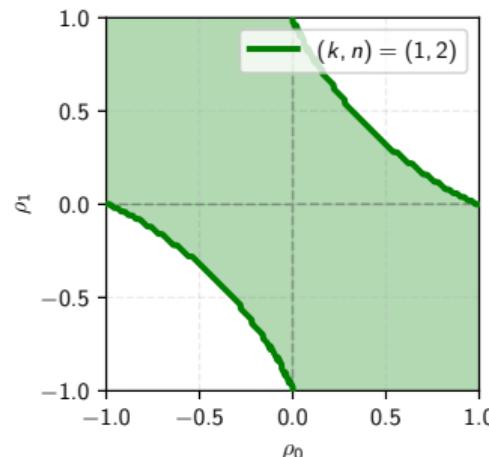
Proof

- recall: $u(Z) \succeq v(Z) \iff \text{there exists } P_{V|U} \text{ such that } P_{u(Z)}^{\mathcal{H}} \xrightarrow{P_{V|U}} P_{v(Z)}^{\mathcal{H}}$
- explicitly construct channel (that does not depend on \mathcal{H}) so that

$$P_{AX^n \oplus AY^n}^{\mathcal{H}} \longrightarrow P_{(AX^n, BY^n)}^{\mathcal{H}} \quad \text{for any } \rho_0, \rho_1$$

$$P_{X^k \oplus Y^k}^{\mathcal{H}} \longrightarrow P_{AX^n \oplus AY^n}^{\mathcal{H}} \quad \text{for (1) } \rho_1 = 0 \text{ or } \rho_0 = 0, \text{ (3) } \rho_1 = -\rho_0$$

- conjecture:



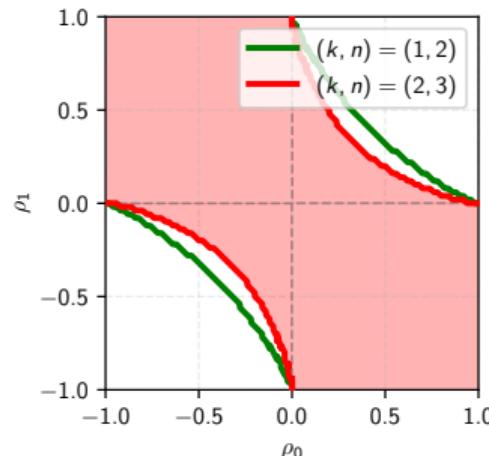
Proof

- recall: $u(Z) \succeq v(Z) \iff \text{there exists } P_{V|U} \text{ such that } P_{u(Z)}^{\mathcal{H}} \xrightarrow{P_{V|U}} P_{v(Z)}^{\mathcal{H}}$
- explicitly construct channel (that does not depend on \mathcal{H}) so that

$$P_{AX^n \oplus AY^n}^{\mathcal{H}} \longrightarrow P_{(AX^n, BY^n)}^{\mathcal{H}} \quad \text{for any } \rho_0, \rho_1$$

$$P_{X^k \oplus Y^k}^{\mathcal{H}} \longrightarrow P_{AX^n \oplus AY^n}^{\mathcal{H}} \quad \text{for (1) } \rho_1 = 0 \text{ or } \rho_0 = 0, \text{ (3) } \rho_1 = -\rho_0$$

- conjecture:



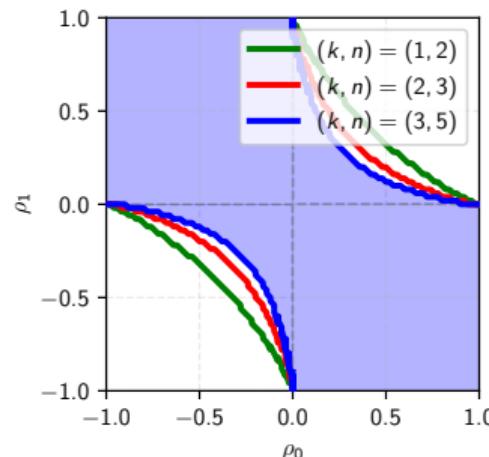
Proof

- recall: $u(Z) \succeq v(Z) \iff \text{there exists } P_{V|U} \text{ such that } P_{u(Z)}^{\mathcal{H}} \xrightarrow{P_{V|U}} P_{v(Z)}^{\mathcal{H}}$
- explicitly construct channel (that does not depend on \mathcal{H}) so that

$$P_{AX^n \oplus AY^n}^{\mathcal{H}} \longrightarrow P_{(AX^n, BY^n)}^{\mathcal{H}} \quad \text{for any } \rho_0, \rho_1$$

$$P_{X^k \oplus Y^k}^{\mathcal{H}} \longrightarrow P_{AX^n \oplus AY^n}^{\mathcal{H}} \quad \text{for (1) } \rho_1 = 0 \text{ or } \rho_0 = 0, \text{ (3) } \rho_1 = -\rho_0$$

- conjecture:



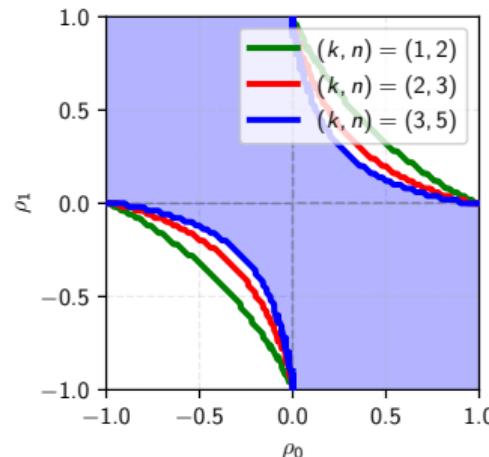
Proof

- recall: $u(Z) \succeq v(Z) \iff \text{there exists } P_{V|U} \text{ such that } P_{u(Z)}^{\mathcal{H}} \xrightarrow{P_{V|U}} P_{v(Z)}^{\mathcal{H}}$
- explicitly construct channel (that does not depend on \mathcal{H}) so that

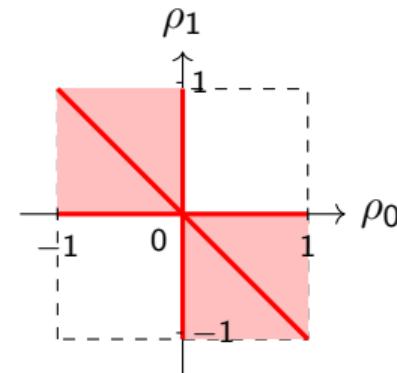
$$P_{AX^n \oplus AY^n}^{\mathcal{H}} \longrightarrow P_{(AX^n, BY^n)}^{\mathcal{H}} \quad \text{for any } \rho_0, \rho_1$$

$$P_{X^k \oplus Y^k}^{\mathcal{H}} \longrightarrow P_{AX^n \oplus AY^n}^{\mathcal{H}} \quad \text{for (1) } \rho_1 = 0 \text{ or } \rho_0 = 0, \text{ (3) } \rho_1 = -\rho_0$$

- conjecture:



$$\xrightarrow{n \rightarrow \infty} ?$$



Summary

Summary

- truncation is the best linear code for testing:
 - (1) for/against independence
 - (2) opposite correlations of same magnitude

Summary

- truncation is the best linear code for testing:
 - (1) for/against independence
 - (2) opposite correlations of same magnitude
- conjecture: also for testing opposite correlations of any magnitude

Summary

- truncation is the best linear code for testing:
 - (1) for/against independence
 - (2) opposite correlations of same magnitude
- conjecture: also for testing opposite correlations of any magnitude

arXiv:2601.10526

Thank you!