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o |I-MMSE relationship: /(X,snr) = 2/ mmse(X,v)dy, H(X)=I(X, “c")
0
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-
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@ optimal distribution at snr: indistinguishable at SNR < snr, distinguishable at SNR > snr
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o for X with E[X2(kt2)] < co: if E[X"] = E[G"], n=1,..., k and E[X*+1] £ E[G<*],
then /(G,snr) — I(X,snr) = @(snrk*1) as snr — 0

@ kp = maximum number of moments of G matched by X with H(X) < h

o | C(snr) — Cy(h,snr) = O(snrknt1)
(O instead of O to allow for X with E[X2(k+2)] = o0)
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n=1,2,3,... k?
A:iff (k odd) there exists 5,1 such that Hy i (s1,..., 5k, Sk1) = 0
2
(k even) there exist 51, Sc1o such that HK+1(51, cey Sky Ski1,5k42) = 0;
2
finite support: at most | k/2| + 1 atoms (if it exists)

5/7



Outline

© Low SNR capacity



Main result

Theorem

For any continuous W, there exists ny € (0, %) such that

6/7



Main result

Theorem

For any continuous W, there exists ny € (0, %) such that
(i) if X has E[X"] = E[W"] for n =1,2,3,4, then H(X) > ha(nw).

6/7



Main result

Theorem
For any continuous W, there exists ny € (0, %) such that
(i) if X has E[X"] = E[W?"] for n =1,2,3,4, then H(X) > ha(nw).
(ii) for any h > 0, there is X with H(X) < h and E[X"] = E[W"] for n =1,2,3.

6/7



Main result
Theorem

For any continuous W, there exists ny € (0, %) such that
(i) if X has E[X"] = E[W"] for n =1,2,3,4, then H(X) > ha(nw).
(ii) for any h > 0, there is X with H(X) < h and E[X"] = E[W"] for n =1,2,3.

Proof idea

6/7




Main result
Theorem

For any continuous W, there exists ny € (0, %) such that
(i) if X has E[X"] = E[W"] for n =1,2,3,4, then H(X) > ha(nw).
(ii) for any h > 0, there is X with H(X) < h and E[X"] = E[W"] for n =1,2,3.

Proof idea

X wp.e<1/2
o HIX) < h<log2 «= X = wp- e <1/
xo wp.l—e>1/2

6/7




Main result
Theorem

For any continuous W, there exists ny € (0, %) such that
(i) if X has E[X"] = E[W?"] for n =1,2,3,4, then H(X) > ha(nw).
(ii) for any h > 0, there is X with H(X) < h and E[X"] = E[W"] for n =1,2,3.

Proof idea

X wp. e<1/2
oH(X)§h<Iog2<:>X:{ wp- e <1/

xo wp.l—e>1/2
o need E[X"] = s, := LE[W"] — (1 - €)x§)

6/7




Main result
Theorem

For any continuous W, there exists ny € (0, %) such that
(i) if X has E[X"] = E[W?"] for n =1,2,3,4, then H(X) > ha(nw).
(ii) for any h > 0, there is X with H(X) < h and E[X"] = E[W"] for n =1,2,3.

Proof idea

X wp. e<1/2
e HX)< h<log2 «<— X = wp. € <1/
xo wp.l—e>1/2
o need E[X"] = s, := L(E[W"] — (1 - €)x])

o check: si,...,s4 “valid” iff € > ny, but s1, sp, s3 always “valid”

6/7




Main result
Theorem

For any continuous W, there exists ny € (0, %) such that
(i) if X has E[X"] = E[W"] for n =1,2,3,4, then H(X) > ha(nw).
(ii) for any h > 0, there is X with H(X) < h and E[X"] = E[W"] for n =1,2,3.

Proof idea

X wp.e<1/2
o HX)< h<log2 <= X = wp- e <1/
xo wp.l—e>1/2
o need E[X"] = s, := LE[W"] — (1 - €)x§)

o check: si,...,s4 “valid” iff € > ny, but s1, sp, s3 always “valid”

DJ
Corollary

1
ne =3

6/7



Main result
Theorem

For any continuous W, there exists ny € (0, %) such that
(i) if X has E[X"] = E[W?"] for n =1,2,3,4, then H(X) > ha(nw).
(ii) for any h > 0, there is X with H(X) < h and E[X"] = E[W"] for n =1,2,3.

Proof idea

X wp. e<1/2
e HX)< h<log2 «<— X = wp. € <1/
xo wp.l—e>1/2
o need E[X"] = s, := L(E[W"] — (1 - €)x])

o check: si,...,s4 “valid” iff € > ny, but s1, sp, s3 always “valid”

D)
Corollary

nG = %, so for h < hy(3), as snr — 0, C(snr) — Cu(h,snr) = O(snr*).
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@ snr— 0,0 < h< ha(3): Cy(h,snr) = C(snr) — O(snr*), via entropy-constrained version

of truncated moment problem

@ for any continuous distribution, only three moments can be matched by a discrete
distribution of sufficiently small entropy

@ open:
o structure of capacity-achieving distributions

o Cy(h,snr) for other h,snr

o insights from/to estimation problems?

Thank you!
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