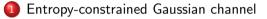
On entropy-constrained Gaussian channel capacity via the moment problem

Adway Girish

joint work with Shlomo Shamai and Emre Telatar

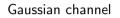
formation Processing Group

June 26, 2025

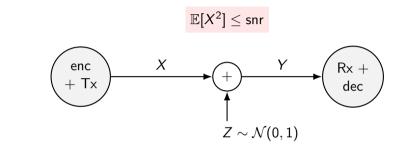


2 Moment problems

Gaussian channel

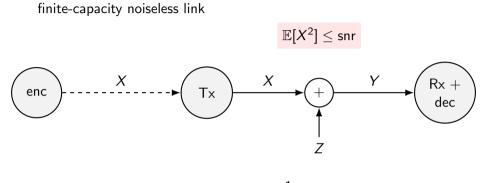


Gaussian channel

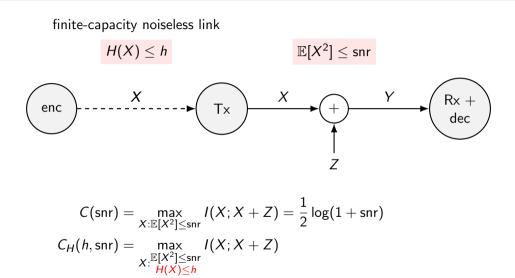


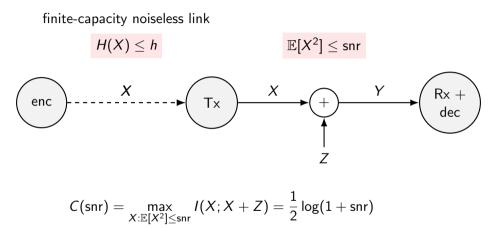
$$C(\operatorname{snr}) = \max_{X: \mathbb{E}[X^2] \leq \operatorname{snr}} I(X; X + Z) = \frac{1}{2} \log(1 + \operatorname{snr})$$

Gaussian channel

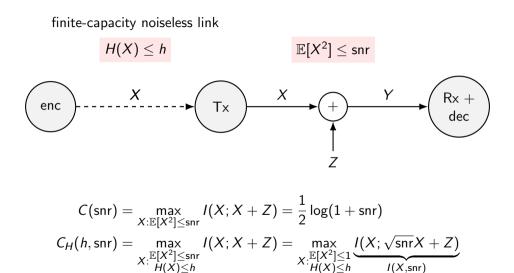


$$C(\operatorname{snr}) = \max_{X: \mathbb{E}[X^2] \leq \operatorname{snr}} I(X; X + Z) = \frac{1}{2} \log(1 + \operatorname{snr})$$





$$C_{H}(h, \operatorname{snr}) = \max_{\substack{X: \overset{\mathbb{E}[X^{2}] \leq \operatorname{snr}}{H(X) \leq h}}} I(X; X + Z) = \max_{\substack{X: \overset{\mathbb{E}[X^{2}] \leq 1}{H(X) \leq h}}} I(X; \sqrt{\operatorname{snr}} X + Z)$$



• wlog let
$$\mathbb{E}[X]=0,$$
 $\mathbb{E}[X^2]=1;$ $G\sim\mathcal{N}(0,1)$ independent of Z

• wlog let
$$\mathbb{E}[X]=$$
 0, $\mathbb{E}[X^2]=$ 1; $G\sim\mathcal{N}(0,1)$ independent of Z

•
$$I(G, \operatorname{snr}) - I(X, \operatorname{snr}) = D(\sqrt{\operatorname{snr}}X + Z \| \sqrt{\operatorname{snr}}G + Z)$$

• wlog let
$$\mathbb{E}[X]=$$
 0, $\mathbb{E}[X^2]=$ 1; $G\sim\mathcal{N}(0,1)$ independent of Z

•
$$I(G, \operatorname{snr}) - I(X, \operatorname{snr}) = D(\sqrt{\operatorname{snr}}X + Z \parallel \sqrt{\operatorname{snr}}G + Z)$$

•
$$C(\operatorname{snr}) - C_H(h, \operatorname{snr}) = \min_{\substack{X: \overset{\mathbb{E}[X^2] \leq 1, \\ H(X) \leq h}}} D(\sqrt{\operatorname{snr}}X + Z \| \sqrt{\operatorname{snr}}G + Z)$$

• wlog let
$$\mathbb{E}[X]=0,$$
 $\mathbb{E}[X^2]=1;$ $G\sim\mathcal{N}(0,1)$ independent of Z

•
$$I(G, \operatorname{snr}) - I(X, \operatorname{snr}) = D(\sqrt{\operatorname{snr}}X + Z \| \sqrt{\operatorname{snr}}G + Z)$$

•
$$C(\operatorname{snr}) - C_H(h, \operatorname{snr}) = \min_{\substack{X: \overset{\mathbb{E}[X^2] \leq 1, \\ H(X) \leq h}}} D(\sqrt{\operatorname{snr}}X + Z \| \sqrt{\operatorname{snr}}G + Z)$$

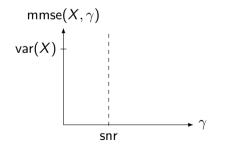
• optimal distribution at h: discrete X with $H(X) \le h$ that is closest to $\mathcal{N}(0, 1 + \operatorname{snr})$ after "Gaussian smoothing"

• MMSE of estimating X from $Y = \sqrt{\operatorname{snr}}X + Z$:

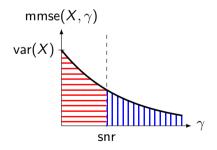
 $\mathsf{mmse}(X,\mathsf{snr}) = \mathbb{E}\left[(X - \mathbb{E}[X \mid Y])^2\right]$

• I-MMSE relationship:
$$I(X, \operatorname{snr}) = \frac{1}{2} \int_0^{\operatorname{snr}} \operatorname{mmse}(X, \gamma) \, d\gamma, \quad H(X) = I(X, \ "\infty")$$

• I-MMSE relationship:
$$I(X, \operatorname{snr}) = \frac{1}{2} \int_0^{\operatorname{snr}} \operatorname{mmse}(X, \gamma) \, \mathrm{d}\gamma, \quad H(X) = I(X, \ ``\infty")$$



• I-MMSE relationship:
$$I(X, \operatorname{snr}) = \frac{1}{2} \int_0^{\operatorname{snr}} \operatorname{mmse}(X, \gamma) \, d\gamma, \quad H(X) = I(X, \ "\infty")$$



• MMSE of estimating X from $Y = \sqrt{\operatorname{snr}}X + Z$: $\operatorname{mmse}(X, \operatorname{snr}) = \mathbb{E}\left[(X - \mathbb{E}[X \mid Y])^2\right]$

snr

• MMSE of estimating X from $Y = \sqrt{\operatorname{snr}}X + Z$: $\operatorname{mmse}(X, \operatorname{snr}) = \mathbb{E}\left[(X - \mathbb{E}[X \mid Y])^2\right]$

snr

• I-MMSE relationship:
$$I(X, \operatorname{snr}) = \frac{1}{2} \int_{0}^{\operatorname{snr}} \operatorname{mmse}(X, \gamma) \, d\gamma, \quad H(X) = I(X, "\infty")$$

$$\operatorname{mmse}(X, \gamma)$$

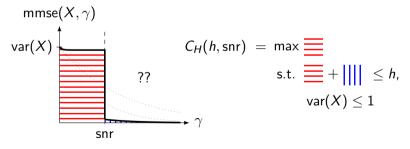
$$\operatorname{var}(X) = \operatorname{max} =$$

$$\operatorname{s.t.} = + |||| \leq h,$$

$$\operatorname{var}(X) \leq 1$$

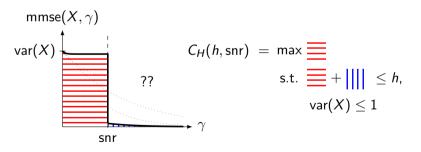
3/7

• I-MMSE relationship:
$$I(X, \operatorname{snr}) = \frac{1}{2} \int_0^{\operatorname{snr}} \operatorname{mmse}(X, \gamma) \, \mathrm{d}\gamma, \quad H(X) = I(X, "\infty")$$



• MMSE of estimating X from $Y = \sqrt{\operatorname{snr}}X + Z$: $\operatorname{mmse}(X, \operatorname{snr}) = \mathbb{E}\left[(X - \mathbb{E}[X \mid Y])^2\right]$

• I-MMSE relationship:
$$I(X, \operatorname{snr}) = \frac{1}{2} \int_0^{\operatorname{snr}} \operatorname{mmse}(X, \gamma) \, \mathrm{d}\gamma, \quad H(X) = I(X, "\infty")$$



• optimal distribution at snr: indistinguishable at SNR < snr, distinguishable at SNR > snr

•
$$\mathbb{E}[X^{2n}] < \infty$$
: $I(X, \operatorname{snr}) = \sum_{i=1}^{n-1} a_{i,X} \operatorname{snr}^i + r_{n,X} \operatorname{snr}^n$

•
$$\mathbb{E}[X^{2n}] < \infty$$
: $I(X, \operatorname{snr}) = \sum_{i=1}^{n-1} a_{i,X} \operatorname{snr}^i + r_{n,X} \operatorname{snr}^n$

• $a_{k,X}$ is a polynomial of $\{\mathbb{E}[X^n]: n = 1, \dots, k\}$ for $k \ge 2$

•
$$\mathbb{E}[X^{2n}] < \infty$$
: $I(X, \operatorname{snr}) = \sum_{i=1}^{n-1} a_{i,X} \operatorname{snr}^i + r_{n,X} \operatorname{snr}^n$

- $a_{k,X}$ is a polynomial of $\{\mathbb{E}[X^n]: n = 1, \dots, k\}$ for $k \ge 2$
- for X with $\mathbb{E}[X^{2(k+2)}] < \infty$:

•
$$\mathbb{E}[X^{2n}] < \infty$$
: $I(X, \operatorname{snr}) = \sum_{i=1}^{n-1} a_{i,X} \operatorname{snr}^i + r_{n,X} \operatorname{snr}^n$

• $a_{k,X}$ is a polynomial of $\{\mathbb{E}[X^n]: n = 1, \dots, k\}$ for $k \ge 2$

• for X with $\mathbb{E}[X^{2(k+2)}] < \infty$: if $\mathbb{E}[X^n] = \mathbb{E}[G^n]$, $n = 1, \dots, k$ and $\mathbb{E}[X^{k+1}] \neq \mathbb{E}[G^{k+1}]$,

•
$$\mathbb{E}[X^{2n}] < \infty$$
: $I(X, \operatorname{snr}) = \sum_{i=1}^{n-1} a_{i,X} \operatorname{snr}^i + r_{n,X} \operatorname{snr}^n$

- $a_{k,X}$ is a polynomial of $\{\mathbb{E}[X^n] : n = 1, \dots, k\}$ for $k \ge 2$
- for X with $\mathbb{E}[X^{2(k+2)}] < \infty$: if $\mathbb{E}[X^n] = \mathbb{E}[G^n]$, n = 1, ..., k and $\mathbb{E}[X^{k+1}] \neq \mathbb{E}[G^{k+1}]$, then $I(G, \operatorname{snr}) - I(X, \operatorname{snr}) = \Theta(\operatorname{snr}^{k+1})$ as $\operatorname{snr} \to 0$

•
$$\mathbb{E}[X^{2n}] < \infty$$
: $I(X, \operatorname{snr}) = \sum_{i=1}^{n-1} a_{i,X} \operatorname{snr}^i + r_{n,X} \operatorname{snr}^n$

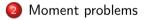
- $a_{k,X}$ is a polynomial of $\{\mathbb{E}[X^n]: n = 1, \dots, k\}$ for $k \ge 2$
- for X with $\mathbb{E}[X^{2(k+2)}] < \infty$: if $\mathbb{E}[X^n] = \mathbb{E}[G^n]$, n = 1, ..., k and $\mathbb{E}[X^{k+1}] \neq \mathbb{E}[G^{k+1}]$, then $I(G, \operatorname{snr}) - I(X, \operatorname{snr}) = \Theta(\operatorname{snr}^{k+1})$ as $\operatorname{snr} \to 0$
- $k_h := \text{maximum number of moments of } G$ matched by X with $H(X) \le h$

•
$$\mathbb{E}[X^{2n}] < \infty$$
: $I(X, \operatorname{snr}) = \sum_{i=1}^{n-1} a_{i,X} \operatorname{snr}^i + r_{n,X} \operatorname{snr}^n$

- $a_{k,X}$ is a polynomial of $\{\mathbb{E}[X^n] : n = 1, \dots, k\}$ for $k \ge 2$
- for X with $\mathbb{E}[X^{2(k+2)}] < \infty$: if $\mathbb{E}[X^n] = \mathbb{E}[G^n]$, n = 1, ..., k and $\mathbb{E}[X^{k+1}] \neq \mathbb{E}[G^{k+1}]$, then $I(G, \operatorname{snr}) - I(X, \operatorname{snr}) = \Theta(\operatorname{snr}^{k+1})$ as $\operatorname{snr} \to 0$
- $k_h := \text{maximum number of moments of } G$ matched by X with $H(X) \le h$
- $C(\operatorname{snr}) C_H(h, \operatorname{snr}) = \mathcal{O}(\operatorname{snr}^{k_h+1})$

•
$$\mathbb{E}[X^{2n}] < \infty$$
: $I(X, \operatorname{snr}) = \sum_{i=1}^{n-1} a_{i,X} \operatorname{snr}^i + r_{n,X} \operatorname{snr}^n$

- $a_{k,X}$ is a polynomial of $\{\mathbb{E}[X^n]: n = 1, \dots, k\}$ for $k \ge 2$
- for X with $\mathbb{E}[X^{2(k+2)}] < \infty$: if $\mathbb{E}[X^n] = \mathbb{E}[G^n]$, n = 1, ..., k and $\mathbb{E}[X^{k+1}] \neq \mathbb{E}[G^{k+1}]$, then $I(G, \operatorname{snr}) - I(X, \operatorname{snr}) = \Theta(\operatorname{snr}^{k+1})$ as $\operatorname{snr} \to 0$
- $k_h := \text{maximum number of moments of } G$ matched by X with $H(X) \le h$
- $C(\operatorname{snr}) C_H(h, \operatorname{snr}) = O(\operatorname{snr}^{k_h+1})$ (O instead of Θ to allow for X with $\mathbb{E}[X^{2(k_h+2)}] = \infty$)



Classical moment problem

Classical moment problem

• Q: Given s_1, s_2, s_3, \ldots , does there exist X on \mathbb{R} such that $\mathbb{E}[X^n] = s_n$ for $n = 1, 2, 3, \ldots$?

Classical moment problem

• Q: Given s_1, s_2, s_3, \ldots , does there exist X on \mathbb{R} such that $\mathbb{E}[X^n] = s_n$ for $n = 1, 2, 3, \ldots$? A: iff $H_n(s_1, \ldots, s_{2n}) = \begin{pmatrix} 1 & s_1 & \ldots & s_n \\ s_1 & s_2 & \ldots & s_{n+1} \\ \vdots & \vdots & \ddots & \vdots \\ s_n & s_{n+1} & \ldots & s_{2n} \end{pmatrix} \succeq 0$ for $n = 1, 2, 3, \ldots$

Classical moment problem

• Q: Given s_1, s_2, s_3, \ldots , does there exist X on \mathbb{R} such that $\mathbb{E}[X^n] = s_n$ for $n = 1, 2, 3, \ldots$? A: iff $H_n(s_1, \ldots, s_{2n}) = \begin{pmatrix} 1 & s_1 & \ldots & s_n \\ s_1 & s_2 & \ldots & s_{n+1} \\ \vdots & \vdots & \ddots & \vdots \\ s_n & s_{n+1} & \ldots & s_{2n} \end{pmatrix} \succeq 0$ for $n = 1, 2, 3, \ldots$;

infinite support iff $H_n \succ 0$ for all n

• Q: Given s_1, s_2, s_3, \ldots , does there exist X on \mathbb{R} such that $\mathbb{E}[X^n] = s_n$ for $n = 1, 2, 3, \ldots$? A: iff $H_n(s_1, \ldots, s_{2n}) = \begin{pmatrix} 1 & s_1 & \ldots & s_n \\ s_1 & s_2 & \ldots & s_{n+1} \\ \vdots & \vdots & \ddots & \vdots \\ s_n & s_{n+1} & \ldots & s_{2n} \end{pmatrix} \succeq 0$ for $n = 1, 2, 3, \ldots$; infinite support iff $H_n \succ 0$ for all n

• Q: Given $s_1, s_2, s_3, \ldots, s_k$, does there exist X on \mathbb{R} such that $\mathbb{E}[X^n] = s_n$ for $n = 1, 2, 3, \ldots, k$?

• Q: Given s_1, s_2, s_3, \ldots , does there exist X on \mathbb{R} such that $\mathbb{E}[X^n] = s_n$ for $n = 1, 2, 3, \ldots$? A: iff $H_n(s_1, \ldots, s_{2n}) = \begin{pmatrix} 1 & s_1 & \ldots & s_n \\ s_1 & s_2 & \ldots & s_{n+1} \\ \vdots & \vdots & \ddots & \vdots \\ s_n & s_{n+1} & \ldots & s_{2n} \end{pmatrix} \succeq 0$ for $n = 1, 2, 3, \ldots$; infinite support iff $H_n \succ 0$ for all n

Q: Given s₁, s₂, s₃,..., s_k, does there exist X on ℝ such that E[Xⁿ] = s_n for n = 1, 2, 3, ..., k?
A: iff (k odd)
(k even)

• Q: Given s_1, s_2, s_3, \ldots , does there exist X on \mathbb{R} such that $\mathbb{E}[X^n] = s_n$ for $n = 1, 2, 3, \ldots$? A: iff $H_n(s_1, \ldots, s_{2n}) = \begin{pmatrix} 1 & s_1 & \ldots & s_n \\ s_1 & s_2 & \ldots & s_{n+1} \\ \vdots & \vdots & \ddots & \vdots \\ s_n & s_{n+1} & \ldots & s_{2n} \end{pmatrix} \succeq 0$ for $n = 1, 2, 3, \ldots$; infinite support iff $H_n \succ 0$ for all n

• Q: Given $s_1, s_2, s_3, \ldots, s_k$, does there exist X on \mathbb{R} such that $\mathbb{E}[X^n] = s_n$ for $n = 1, 2, 3, \ldots, k$?

A: iff (k odd) there exists \tilde{s}_{k+1} such that $H_{\frac{k+1}{2}}(s_1, \ldots, s_k, \tilde{s}_{k+1}) \succeq 0$ (k even)

• Q: Given s_1, s_2, s_3, \ldots , does there exist X on \mathbb{R} such that $\mathbb{E}[X^n] = s_n$ for $n = 1, 2, 3, \ldots$? A: iff $H_n(s_1, \ldots, s_{2n}) = \begin{pmatrix} 1 & s_1 & \ldots & s_n \\ s_1 & s_2 & \ldots & s_{n+1} \\ \vdots & \vdots & \ddots & \vdots \\ s_n & s_{n+1} & \ldots & s_{2n} \end{pmatrix} \succeq 0$ for $n = 1, 2, 3, \ldots$; infinite support iff $H_n \succ 0$ for all n

• Q: Given $s_1, s_2, s_3, \ldots, s_k$, does there exist X on \mathbb{R} such that $\mathbb{E}[X^n] = s_n$ for $n = 1, 2, 3, \ldots, k$?

A: iff (k odd) there exists \tilde{s}_{k+1} such that $H_{\frac{k+1}{2}}(s_1, \ldots, s_k, \tilde{s}_{k+1}) \succeq 0$ (k even) there exist $\tilde{s}_{k+1}, \tilde{s}_{k+2}$ such that $H_{\frac{k}{2}+1}(s_1, \ldots, s_k, \tilde{s}_{k+1}, \tilde{s}_{k+2}) \succeq 0$

• Q: Given s_1, s_2, s_3, \ldots , does there exist X on \mathbb{R} such that $\mathbb{E}[X^n] = s_n$ for $n = 1, 2, 3, \ldots$? A: iff $H_n(s_1, \ldots, s_{2n}) = \begin{pmatrix} 1 & s_1 & \ldots & s_n \\ s_1 & s_2 & \ldots & s_{n+1} \\ \vdots & \vdots & \ddots & \vdots \\ s_n & s_{n+1} & \ldots & s_{2n} \end{pmatrix} \succeq 0$ for $n = 1, 2, 3, \ldots$; infinite support iff $H_n \succ 0$ for all n

• Q: Given $s_1, s_2, s_3, \ldots, s_k$, does there exist X on \mathbb{R} such that $\mathbb{E}[X^n] = s_n$ for $n = 1, 2, 3, \ldots, k$?

A: iff (k odd) there exists \tilde{s}_{k+1} such that $H_{\frac{k+1}{2}}(s_1, \ldots, s_k, \tilde{s}_{k+1}) \succeq 0$ (k even) there exist $\tilde{s}_{k+1}, \tilde{s}_{k+2}$ such that $H_{\frac{k}{2}+1}(s_1, \ldots, s_k, \tilde{s}_{k+1}, \tilde{s}_{k+2}) \succeq 0$; finite support: at most |k/2| + 1 atoms (if it exists)

1 Entropy-constrained Gaussian channel

2 Moment problems

Theorem

For any continuous W, there exists $\eta_W \in (0, \frac{1}{2})$ such that

Theorem

For any continuous W, there exists $\eta_W \in (0, \frac{1}{2})$ such that (i) if X has $\mathbb{E}[X^n] = \mathbb{E}[W^n]$ for n = 1, 2, 3, 4, then $H(X) \ge h_2(\eta_W)$.

Theorem

For any continuous W, there exists $\eta_{W} \in (0, rac{1}{2})$ such that

(i) if X has $\mathbb{E}[X^n] = \mathbb{E}[W^n]$ for n = 1, 2, 3, 4, then $H(X) \ge h_2(\eta_W)$.

(ii) for any h > 0, there is X with $H(X) \le h$ and $\mathbb{E}[X^n] = \mathbb{E}[W^n]$ for n = 1, 2, 3.

Theorem

For any continuous W, there exists $\eta_W \in (0, \frac{1}{2})$ such that

(i) if X has $\mathbb{E}[X^n] = \mathbb{E}[W^n]$ for n = 1, 2, 3, 4, then $H(X) \ge h_2(\eta_W)$.

(ii) for any h > 0, there is X with $H(X) \le h$ and $\mathbb{E}[X^n] = \mathbb{E}[W^n]$ for n = 1, 2, 3.

Proof idea

Theorem

For any continuous W, there exists $\eta_W \in (0, \frac{1}{2})$ such that

(i) if X has $\mathbb{E}[X^n] = \mathbb{E}[W^n]$ for n = 1, 2, 3, 4, then $H(X) \ge h_2(\eta_W)$.

(ii) for any h > 0, there is X with $H(X) \le h$ and $\mathbb{E}[X^n] = \mathbb{E}[W^n]$ for n = 1, 2, 3.

Proof idea

•
$$H(X) \le h < \log 2 \iff X = \begin{cases} \tilde{X} & \text{w.p. } \epsilon < 1/2 \\ x_0 & \text{w.p. } 1 - \epsilon > 1/2 \end{cases}$$

Theorem

For any continuous W, there exists $\eta_W \in (0, \frac{1}{2})$ such that

(i) if X has $\mathbb{E}[X^n] = \mathbb{E}[W^n]$ for n = 1, 2, 3, 4, then $H(X) \ge h_2(\eta_W)$.

(ii) for any h > 0, there is X with $H(X) \le h$ and $\mathbb{E}[X^n] = \mathbb{E}[W^n]$ for n = 1, 2, 3.

Proof idea

•
$$H(X) \le h < \log 2 \iff X = \begin{cases} \tilde{X} & \text{w.p. } \epsilon < 1/2 \\ x_0 & \text{w.p. } 1 - \epsilon > 1/2 \end{cases}$$

• need $\mathbb{E}[\tilde{X}^n] = s_n \coloneqq \frac{1}{\epsilon} (\mathbb{E}[W^n] - (1 - \epsilon)x_0^n)$

Theorem

For any continuous W, there exists $\eta_W \in (0, \frac{1}{2})$ such that

(i) if X has $\mathbb{E}[X^n] = \mathbb{E}[W^n]$ for n = 1, 2, 3, 4, then $H(X) \ge h_2(\eta_W)$.

(ii) for any h > 0, there is X with $H(X) \le h$ and $\mathbb{E}[X^n] = \mathbb{E}[W^n]$ for n = 1, 2, 3.

Proof idea

•
$$H(X) \le h < \log 2 \iff X = \begin{cases} \tilde{X} & \text{w.p. } \epsilon < 1/2 \\ x_0 & \text{w.p. } 1 - \epsilon > 1/2 \end{cases}$$

• need $\mathbb{E}[\tilde{X}^n] = s_n \coloneqq \frac{1}{\epsilon} (\mathbb{E}[W^n] - (1 - \epsilon)x_0^n)$

• check: s_1, \ldots, s_4 "valid" iff $\epsilon > \eta_W$, but s_1, s_2, s_3 always "valid"

Theorem

For any continuous W, there exists $\eta_W \in (0, \frac{1}{2})$ such that

(i) if X has $\mathbb{E}[X^n] = \mathbb{E}[W^n]$ for n = 1, 2, 3, 4, then $H(X) \ge h_2(\eta_W)$.

(ii) for any h > 0, there is X with $H(X) \le h$ and $\mathbb{E}[X^n] = \mathbb{E}[W^n]$ for n = 1, 2, 3.

Proof idea

•
$$H(X) \le h < \log 2 \iff X = \begin{cases} \tilde{X} & \text{w.p. } \epsilon < 1/2\\ x_0 & \text{w.p. } 1 - \epsilon > 1/2 \end{cases}$$

• need $\mathbb{E}[\tilde{X}^n] = s_n \coloneqq \frac{1}{\epsilon} (\mathbb{E}[W^n] - (1 - \epsilon)x_0^n)$

• check: s_1, \ldots, s_4 "valid" iff $\epsilon > \eta_W$, but s_1, s_2, s_3 always "valid"

Corollary

 $\eta_G = \frac{1}{3}$

Theorem

For any continuous W, there exists $\eta_W \in (0, \frac{1}{2})$ such that

(i) if X has $\mathbb{E}[X^n] = \mathbb{E}[W^n]$ for n = 1, 2, 3, 4, then $H(X) \ge h_2(\eta_W)$.

(ii) for any h > 0, there is X with $H(X) \le h$ and $\mathbb{E}[X^n] = \mathbb{E}[W^n]$ for n = 1, 2, 3.

Proof idea

•
$$H(X) \le h < \log 2 \iff X = \begin{cases} \tilde{X} & \text{w.p. } \epsilon < 1/2\\ x_0 & \text{w.p. } 1 - \epsilon > 1/2 \end{cases}$$

• need $\mathbb{E}[\tilde{X}^n] = s_n \coloneqq \frac{1}{\epsilon} (\mathbb{E}[W^n] - (1 - \epsilon)x_0^n)$

• check: s_1, \ldots, s_4 "valid" iff $\epsilon > \eta_W$, but s_1, s_2, s_3 always "valid"

Corollary

$$\eta_G = rac{1}{3}$$
, so for $h < h_2(rac{1}{3})$, as snr $\rightarrow 0$, $C(\operatorname{snr}) - C_H(h, \operatorname{snr}) = \mathcal{O}(\operatorname{snr}^4)$.

• entropy-constrained Gaussian channel

• entropy-constrained Gaussian channel capacity $C_H(h, \operatorname{snr})$

- entropy-constrained Gaussian channel capacity $C_H(h, snr)$
- $\operatorname{snr} \to 0$, $0 < h < h_2(\frac{1}{3})$: $C_H(h, \operatorname{snr}) = C(\operatorname{snr}) \mathcal{O}(\operatorname{snr}^4)$

- entropy-constrained Gaussian channel capacity $C_H(h, snr)$
- snr → 0, 0 < h < h₂(¹/₃): C_H(h, snr) = C(snr) O(snr⁴), via entropy-constrained version of truncated moment problem

- entropy-constrained Gaussian channel capacity $C_H(h, snr)$
- snr → 0, 0 < h < h₂(¹/₃): C_H(h, snr) = C(snr) O(snr⁴), via entropy-constrained version of truncated moment problem
- for any continuous distribution, only three moments can be matched by a discrete distribution of sufficiently small entropy

- entropy-constrained Gaussian channel capacity $C_H(h, snr)$
- snr → 0, 0 < h < h₂(¹/₃): C_H(h, snr) = C(snr) O(snr⁴), via entropy-constrained version of truncated moment problem
- for any continuous distribution, only three moments can be matched by a discrete distribution of sufficiently small entropy

open:

- entropy-constrained Gaussian channel capacity $C_H(h, snr)$
- snr → 0, 0 < h < h₂(¹/₃): C_H(h, snr) = C(snr) O(snr⁴), via entropy-constrained version of truncated moment problem
- for any continuous distribution, only three moments can be matched by a discrete distribution of sufficiently small entropy
- open:
 - structure of capacity-achieving distributions

- entropy-constrained Gaussian channel capacity $C_H(h, snr)$
- snr → 0, 0 < h < h₂(¹/₃): C_H(h, snr) = C(snr) O(snr⁴), via entropy-constrained version of truncated moment problem
- for any continuous distribution, only three moments can be matched by a discrete distribution of sufficiently small entropy
- open:
 - structure of capacity-achieving distributions
 - $C_H(h, \operatorname{snr})$ for other h, snr

- entropy-constrained Gaussian channel capacity $C_H(h, snr)$
- snr → 0, 0 < h < h₂(¹/₃): C_H(h, snr) = C(snr) O(snr⁴), via entropy-constrained version of truncated moment problem
- for any continuous distribution, only three moments can be matched by a discrete distribution of sufficiently small entropy
- open:
 - structure of capacity-achieving distributions
 - $C_H(h, \operatorname{snr})$ for other h, snr
 - insights from/to estimation problems?

- entropy-constrained Gaussian channel capacity $C_H(h, snr)$
- snr → 0, 0 < h < h₂(¹/₃): C_H(h, snr) = C(snr) O(snr⁴), via entropy-constrained version of truncated moment problem
- for any continuous distribution, only three moments can be matched by a discrete distribution of sufficiently small entropy
- open:
 - structure of capacity-achieving distributions
 - $C_H(h, \operatorname{snr})$ for other h, snr
 - insights from/to estimation problems?