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Prompt compression

comp

LLM

xx
m

PŶ = ϕLLM(x , q)PŶ = ϕLLM(m, q)

q

It was the best of times, it was the worst
of times, it was the age of wisdom, it was
the age of foolishness, it was the epoch of
belief, it was the epoch of incredulity, it
was the season of light, it was the season
of darkness, it was the spring of hope, it
was the winter of despair.

Prompt

How were the times?

Query

best times worst, age
wisdom foolish, epoch
belief incredul, season
light dark, hope despair.

Compressed prompt (query-agnostic)

best worst.

Compressed prompt (query-aware)

Best and worst. (60%)
Contrasting. (20%)
Mixed. (10%)
Dualistic. (5%)

...

Output
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Prompt compression: query-agnostic
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Prompt compression: query-aware
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Prompt compression: rate-distortion formulation

(X ,Q,Y ) ∼ PXQY = PXQ PY |XQ Y = “true answer”

comp

PM|X

LLMX
M

PŶ = ϕLLM(M,Q)

Q

Compression with side-information

for a fixed decoder, “(m, q) 7→ ϕLLM(m, q)”

Performance metrics:

rate = E
[
len(M)

len(X )

]
distortion = E

[
d
(
Y , ϕLLM(M,Q)

)]
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Distortion-rate function

rate = E
[
len(M)
len(X )

]
distortion = E [d(Y , ϕLLM(M,Q))]

D∗(R) = inf
PM|X

E
[
d
(
Y , ϕLLM(M,Q)

)]
s.t. E

[
len(M)
len(X )

]
≤ R, and

PM|X “is a compressor”

Linear program, but large dimension

≈ 32,00010

Dual:

D∗(R) = sup
λ≥0

{
−λR +

∑
x∈X

minm∈Mx

[
Dx ,m + λ Rx ,m

]}

all possible “compressions” of x

“normalized” distortion, rate

on compressing x 7→ m
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Distortion-rate function: geometric solution via dual

Dual:
D∗(R) = sup

λ≥0

{
− λR +

∑
x∈X

min
m∈Mx

[Dx ,m + λRx ,m]

︸ ︷︷ ︸
for fixed (λ,x)

}

Fix λ ≥ 0, x ∈ X

Rx ,m

Dx ,m

λ = 00 < λ < 0.5λ = 0.50.5 < λ < 1.5λ = 1.5λ > 1.5

Relevant points:

32,00010

→ 10

, (210 → 10)
only finitely many λ

[apple 7→ app, ale, pe;

apple ̸7→ pale, red, lp ]
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Segue to a contraction problem

Optimization 101. . .

thanks to a different problem:

“finite-entropy”
source

H(X ) ≤ A

+
X ∈ R

E[X 2] ≤ P

Z ∼ N (0, 1)

independent of X

Y = X + Z
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independent of X
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E[X 2]≤P
H(X )≤A

I (X ;Y )

Cardinality bounds?

Finite support?

A nontrivial upper bound better than

FI (A,P) = sup

PWX :
E[X 2]≤P
I (W ;X )≤A

I (W ;Y ) ?
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Aside on data processing inequalities

Fix PY |X

DPI: for any PWX , I (W ;Y ) ≤ I (W ;X )

Data processing function: FI (t) = sup
PWX : I (W ;X )≤ t

I (W ;Y )

DPI

SDPI

FIFf

I (W ;X )

I (W ;Y )

Df (QX ||PX )

Df (QY ||PY )

Also DPI: for any PX ,QX , Df (QY ||PY ) ≤ Df (QX ||PX )

Natural analogue: Ff (t) = sup
PX ,QX :Df (QX ||PX )≤ t

Df (QY ||PY )
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Joint range of input and output divergences

Fix PY |X and f

Define Ff (t) = sup
PX ,QX :Df (QX ||PX )≤ t

Df (QY ||PY )

Upper boundary of Df =
⋃

PX ,QX

{(
Df (QX ||PX ),Df (QY ||PY )

)}
Conjecture: Df is convex

( =⇒ Ff is concave) ?

Facts:

FI is NOT necessarily concave (counter-example: PY |X = BEC3)

Fix PX , define F̃I (t,PX ) = sup
PW |X : I (W ;X )≤ t

I (W ;Y ) and

F̃f (t,PX ) = sup
QX :Df (QX ||PX )≤ t

Df (QY ||PY ),

then F̃I (·,PX ) is concave; =⇒ F̃f (·,PX ) is concave

For any f , g ,
⋃

PX ,QX

{(
Df (QX ||PX ),Dg (QX ||PX )

)}
is convex
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In closing. . .

Three problems (1× compression, 2× contraction):

Prompt compression for LLMs

Entropy-constrained capacity

Joint range of divergences

Two more:

(method of types + optimization):

Guesswork

Distributed hypothesis testing

−→ compression + contraction

All thoughts welcome

Thank you!
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