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Prelude: computing integrals numerically

o Elg(W)) = [ gw)fw(w)dw ~ 3 pig() = Elg(X)]
R i=1
o if X has E[X"] = E[W"] for n=1,...,k, then

/ gw)fw(w)dw =3 pig(x)
R i=1

for polynomial g of degree < k

@ given fyy and constraints on X, how large can k be?
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Truncated moment problem

e Q: Given s1,,s3,..., does there exist X on R such that E[X"] = s, for n=1,2,3,...7
1 s ... s,
. S1 S ... Sp41
A:iff Hy(s1,..oysm) = | . . . ) =0forn=1,2,3,...;
Sn Sn+1 --- S2n

infinite support iff H, > 0 for all n

e Q: Given s1,52,53, ...,k does there exist X on R such that E[X"] = s, for
n=1,2,3,... k?
A:iff (k odd) there exists 5,1 such that Hy i (s1,..., 5k, Sk1) = 0
2
(k even) there exist 51, Sc1o such that HK+1(51, cey Sky Ski1,5k42) = 0;
2
finite support: at most | k/2| + 1 atoms (if it exists)
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atom x; = root of Pp,(x) = (=1) QD(X), with probability p; = (m
o(x) dxm

, E[X]=0 E[X?]=1
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3/8



Gauss—Hermite quadrature
o W ~ N(0,1) with density ¢(w) = exp( 2)

o "Gauss—Hermite quadrature” X& with m atoms matches 2m — 1 moments:

—1)m™ dm - 1!
atom x; = root of Pp,(x) = (=1) QD(X), with probability p; = (27)
p(x)  dxm mP (i)
P3(X)' Pi
, E[X]=0 E[X? =1
E[X} =0 E[X%=3
E[X®] =0 E[X®] #15
/I’/ \\\ II/ . X, X

3/8



Gauss—Hermite quadrature

e W ~ N(0,1) with density p(w) = exp( 2)

o "Gauss—Hermite quadrature” X& with m atoms matches 2m — 1 moments:

atom x; = root of Pp,(x) = (=1)™ d"p(x) . i ﬁ

,  with probability p; =
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Gauss—Hermite quadrature

e W ~ N(0,1) with density p(w) = exp( 2)

o "Gauss—Hermite quadrature” X& with m atoms matches 2m — 1 moments
(m—1)!
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Pm 1( )

= root of Pp(x) = SO0 dxm
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Gauss—Hermite quadrature

e W ~ N(0,1) with density p(w) = exp( 2)

o "Gauss—Hermite quadrature” X& with m atoms matches 2m — 1 moments
(m—1)!

—1)m ¢m
(=1) QD(X), with probability p; = P ()
Pm 1( )

= root of Pp(x) = SO0 dxm

atom x;
Ps(x), pi
, E[X]=0 E[X? =1
E[X} =0 E[X%=3
i E[X5] =0 E[X%] =15
: E[X]=0 E[X®] =105

R N A R S
E[X°] =0 E[X!] #1155

N

@ optimal trade-off of atoms to moments matched
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Entropy-constrained moment problem

for discrete X with probability masses p; > 0, define entropy as
1
HX] = pjlog o = “Ellogu({X})]

@ measure of information/randomness/complexity; fundamental compressibility limit

back to Gaussian moment matching: H[X] ~ % log m — 0o as m — oo

can we find (Xi)x such that H[X)] < h < co and E[X]] = E[W"] for n=1,... k7
@ no (would imply weak convergence to W + lower semi-continuity of H)

@ how many moments can we match if entropy is at most h then?
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Proof idea

X wp.e<1/2
o H[X] < h<log2 <= X = wp-e<1/
X wp.l—e>1/2
o need E[X"] = s, = LE[W" - (1-€)x)

o check: si,...,ss “valid” iff € > n, but s1, sp, s3 always “valid”
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Testing against Gaussian in large noise

e observe n i.i.d. samples Y; = X; + Z; with Z; ~ Z ~ N(0,0?) independent of X;, o — oo

H=0: X~ X discrete with H[X] < h A
° decide H € {0,1} from Y7
H=1: X;~G~N(0,1)

type-l error: Pr{H =1|H=0} and type-ll error: Pr{H=0|H=1}

Stein regime:
type-l error <e <1 and type-ll error < exp[—nDki(X + Z|| G+ Z) + o(n)]

t- t=_min Du(X+Z||G+Z =0(%) for h < hy(3
worst-case exponent = min kKL(X+Z|G+2) (Z5) for h < ha(3)

proof: Taylor expansion, k" term depends on first kK moments, can match only 3 moments
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Summary

@ entropy-constrained moment problem
@ can match only three moments if the entropy is “small”

@ many applications, example: hypothesis testing

Thank you!
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