A moment-matching problem with an entropy constraint

Adway Girish

July 2, 2025

A moment-matching problem with an entropy constraint

Adway Girish thanks to Shlomo Shamai and Emre Telatar (Girish–Shamai–Telatar, ISIT 2025)

formation Processing Group

July 2, 2025

•
$$\mathbb{E}[g(W)] = \int_{\mathbb{R}} g(w) f_W(w) dw$$

•
$$\mathbb{E}[g(W)] = \int_{\mathbb{R}} g(w) f_W(w) dw \approx \sum_{i=1}^m p_i g(x_i)$$

•
$$\mathbb{E}[g(W)] = \int_{\mathbb{R}} g(w) f_W(w) dw \approx \sum_{i=1}^m p_i g(x_i) = \mathbb{E}[g(X)]$$

•
$$\mathbb{E}[g(W)] = \int_{\mathbb{R}} g(w) f_W(w) dw \approx \sum_{i=1}^m p_i g(x_i) = \mathbb{E}[g(X)]$$

• if X has
$$\mathbb{E}[X^n] = \mathbb{E}[W^n]$$
 for $n = 1, \dots, k$

•
$$\mathbb{E}[g(W)] = \int_{\mathbb{R}} g(w) f_W(w) dw \approx \sum_{i=1}^m p_i g(x_i) = \mathbb{E}[g(X)]$$

• if X has
$$\mathbb{E}[X^n] = \mathbb{E}[W^n]$$
 for $n = 1, \dots, k$, then

$$\int_{\mathbb{R}} g(w) f_{W}(w) \, \mathrm{d}w = \sum_{i=1}^{m} p_{i}g(x_{i})$$

for polynomial g of degree $\leq k$

•
$$\mathbb{E}[g(W)] = \int_{\mathbb{R}} g(w) f_W(w) dw \approx \sum_{i=1}^m p_i g(x_i) = \mathbb{E}[g(X)]$$

• if X has
$$\mathbb{E}[X^n] = \mathbb{E}[W^n]$$
 for $n = 1, \dots, k$, then

$$\int_{\mathbb{R}} g(w) f_{W}(w) \, \mathrm{d}w = \sum_{i=1}^{m} p_{i}g(x_{i})$$

for polynomial g of degree $\leq k$

• given f_W and constraints on X, how large can k be?

2 Entropy-constrained version

Application to a hypothesis testing problem

Outline

2 Entropy-constrained version

3 Application to a hypothesis testing problem

• Q: Given s_1, s_2, s_3, \ldots , does there exist X on \mathbb{R} such that $\mathbb{E}[X^n] = s_n$ for $n = 1, 2, 3, \ldots$?

• Q: Given s_1, s_2, s_3, \ldots , does there exist X on \mathbb{R} such that $\mathbb{E}[X^n] = s_n$ for $n = 1, 2, 3, \ldots$? A: iff $H_n(s_1, \ldots, s_{2n}) = \begin{pmatrix} 1 & s_1 & \ldots & s_n \\ s_1 & s_2 & \ldots & s_{n+1} \\ \vdots & \vdots & \ddots & \vdots \\ s_n & s_{n+1} & \ldots & s_{2n} \end{pmatrix} \succeq 0$ for $n = 1, 2, 3, \ldots$

• Q: Given s_1, s_2, s_3, \ldots , does there exist X on \mathbb{R} such that $\mathbb{E}[X^n] = s_n$ for $n = 1, 2, 3, \ldots$? A: iff $H_n(s_1, \ldots, s_{2n}) = \begin{pmatrix} 1 & s_1 & \ldots & s_n \\ s_1 & s_2 & \ldots & s_{n+1} \\ \vdots & \vdots & \ddots & \vdots \\ s_n & s_{n+1} & \ldots & s_{2n} \end{pmatrix} \succeq 0$ for $n = 1, 2, 3, \ldots$;

infinite support iff $H_n \succ 0$ for all n

• Q: Given s_1, s_2, s_3, \ldots , does there exist X on \mathbb{R} such that $\mathbb{E}[X^n] = s_n$ for $n = 1, 2, 3, \ldots$? A: iff $H_n(s_1, \ldots, s_{2n}) = \begin{pmatrix} 1 & s_1 & \ldots & s_n \\ s_1 & s_2 & \ldots & s_{n+1} \\ \vdots & \vdots & \ddots & \vdots \\ s_n & s_{n+1} & \ldots & s_{2n} \end{pmatrix} \succeq 0$ for $n = 1, 2, 3, \ldots$; infinite support iff $H_n \succ 0$ for all n

• Q: Given $s_1, s_2, s_3, \ldots, s_k$, does there exist X on \mathbb{R} such that $\mathbb{E}[X^n] = s_n$ for $n = 1, 2, 3, \ldots, k$?

• Q: Given s_1, s_2, s_3, \ldots , does there exist X on \mathbb{R} such that $\mathbb{E}[X^n] = s_n$ for $n = 1, 2, 3, \ldots$? A: iff $H_n(s_1, \ldots, s_{2n}) = \begin{pmatrix} 1 & s_1 & \ldots & s_n \\ s_1 & s_2 & \ldots & s_{n+1} \\ \vdots & \vdots & \ddots & \vdots \\ s_n & s_{n+1} & \ldots & s_{2n} \end{pmatrix} \succeq 0$ for $n = 1, 2, 3, \ldots$; infinite support iff $H_n \succ 0$ for all n

Q: Given s₁, s₂, s₃,..., s_k, does there exist X on ℝ such that E[Xⁿ] = s_n for n = 1, 2, 3, ..., k?
A: iff (k odd)
(k even)

• Q: Given s_1, s_2, s_3, \ldots , does there exist X on \mathbb{R} such that $\mathbb{E}[X^n] = s_n$ for $n = 1, 2, 3, \ldots$? A: iff $H_n(s_1, \ldots, s_{2n}) = \begin{pmatrix} 1 & s_1 & \ldots & s_n \\ s_1 & s_2 & \ldots & s_{n+1} \\ \vdots & \vdots & \ddots & \vdots \\ s_n & s_{n+1} & \ldots & s_{2n} \end{pmatrix} \succeq 0$ for $n = 1, 2, 3, \ldots$; infinite support iff $H_n \succ 0$ for all n

• Q: Given $s_1, s_2, s_3, \ldots, s_k$, does there exist X on \mathbb{R} such that $\mathbb{E}[X^n] = s_n$ for $n = 1, 2, 3, \ldots, k$?

A: iff (k odd) there exists \tilde{s}_{k+1} such that $H_{\frac{k+1}{2}}(s_1, \ldots, s_k, \tilde{s}_{k+1}) \succeq 0$ (k even)

• Q: Given s_1, s_2, s_3, \ldots , does there exist X on \mathbb{R} such that $\mathbb{E}[X^n] = s_n$ for $n = 1, 2, 3, \ldots$? A: iff $H_n(s_1, \ldots, s_{2n}) = \begin{pmatrix} 1 & s_1 & \ldots & s_n \\ s_1 & s_2 & \ldots & s_{n+1} \\ \vdots & \vdots & \ddots & \vdots \\ s_n & s_{n+1} & \ldots & s_{2n} \end{pmatrix} \succeq 0$ for $n = 1, 2, 3, \ldots$; infinite support iff $H_n \succ 0$ for all n

• Q: Given $s_1, s_2, s_3, \ldots, s_k$, does there exist X on \mathbb{R} such that $\mathbb{E}[X^n] = s_n$ for $n = 1, 2, 3, \ldots, k$?

A: iff (k odd) there exists \tilde{s}_{k+1} such that $H_{\frac{k+1}{2}}(s_1, \ldots, s_k, \tilde{s}_{k+1}) \succeq 0$ (k even) there exist $\tilde{s}_{k+1}, \tilde{s}_{k+2}$ such that $H_{\frac{k}{2}+1}(s_1, \ldots, s_k, \tilde{s}_{k+1}, \tilde{s}_{k+2}) \succeq 0$

• Q: Given s_1, s_2, s_3, \ldots , does there exist X on \mathbb{R} such that $\mathbb{E}[X^n] = s_n$ for $n = 1, 2, 3, \ldots$? A: iff $H_n(s_1, \ldots, s_{2n}) = \begin{pmatrix} 1 & s_1 & \ldots & s_n \\ s_1 & s_2 & \ldots & s_{n+1} \\ \vdots & \vdots & \ddots & \vdots \\ s_n & s_{n+1} & \ldots & s_{2n} \end{pmatrix} \succeq 0$ for $n = 1, 2, 3, \ldots$; infinite support iff $H_n \succ 0$ for all n

• Q: Given $s_1, s_2, s_3, \ldots, s_k$, does there exist X on \mathbb{R} such that $\mathbb{E}[X^n] = s_n$ for $n = 1, 2, 3, \ldots, k$?

A: iff (k odd) there exists \tilde{s}_{k+1} such that $H_{\frac{k+1}{2}}(s_1, \ldots, s_k, \tilde{s}_{k+1}) \succeq 0$ (k even) there exist $\tilde{s}_{k+1}, \tilde{s}_{k+2}$ such that $H_{\frac{k}{2}+1}(s_1, \ldots, s_k, \tilde{s}_{k+1}, \tilde{s}_{k+2}) \succeq 0$; finite support: at most |k/2| + 1 atoms (if it exists)

•
$$W \sim \mathcal{N}(0,1)$$
 with density $\varphi(w) = \frac{1}{\sqrt{2\pi}} \exp(-\frac{w^2}{2})$

- $W \sim \mathcal{N}(0,1)$ with density $\varphi(w) = rac{1}{\sqrt{2\pi}} \exp(-rac{w^2}{2})$
- "Gauss-Hermite quadrature" X_m^Q with *m* atoms matches 2m 1 moments:

•
$$W \sim \mathcal{N}(0,1)$$
 with density $\varphi(w) = \frac{1}{\sqrt{2\pi}} \exp(-\frac{w^2}{2})$

atom
$$x_i$$
 = root of $P_m(x) = \frac{(-1)^m}{\varphi(x)} \frac{\mathrm{d}^m \varphi(x)}{\mathrm{d} x^m}$,

•
$$W \sim \mathcal{N}(0,1)$$
 with density $\varphi(w) = \frac{1}{\sqrt{2\pi}} \exp(-\frac{w^2}{2})$

atom
$$x_i = \text{root of } P_m(x) = \frac{(-1)^m}{\varphi(x)} \frac{d^m \varphi(x)}{dx^m}$$
, with probability $p_i = \frac{(m-1)!}{mP_{m-1}^2(x_i)}$

•
$$W \sim \mathcal{N}(0,1)$$
 with density $\varphi(w) = \frac{1}{\sqrt{2\pi}} \exp(-\frac{w^2}{2})$

atom
$$x_i = \text{root of } P_m(x) = \frac{(-1)^m}{\varphi(x)} \frac{d^m \varphi(x)}{dx^m}$$
, with probability $p_i = \frac{(m-1)!}{m P_{m-1}^2(x_i)}$
 $P_1(x), p_i$
 $\mathbb{E}[X] = 0 \quad \mathbb{E}[X^2] \neq 1$

•
$$W \sim \mathcal{N}(0,1)$$
 with density $\varphi(w) = \frac{1}{\sqrt{2\pi}} \exp(-\frac{w^2}{2})$

atom
$$x_i = \text{root of } P_m(x) = \frac{(-1)^m}{\varphi(x)} \frac{d^m \varphi(x)}{dx^m}$$
, with probability $p_i = \frac{(m-1)!}{mP_{m-1}^2(x_i)}$
 $P_2(x), p_i$
 $\mathbb{E}[X] = 0 \quad \mathbb{E}[X^2] = 1$
 $\mathbb{E}[X^3] = 0 \quad \mathbb{E}[X^4] \neq 3$

•
$$W \sim \mathcal{N}(0,1)$$
 with density $\varphi(w) = \frac{1}{\sqrt{2\pi}} \exp(-\frac{w^2}{2})$

atom
$$x_i = \text{root of } P_m(x) = \frac{(-1)^m}{\varphi(x)} \frac{d^m \varphi(x)}{dx^m}$$
, with probability $p_i = \frac{(m-1)!}{mP_{m-1}^2(x_i)}$
 $P_3(x), p_i$
 $\mathbb{E}[X] = 0 \quad \mathbb{E}[X^2] = 1$
 $\mathbb{E}[X^3] = 0 \quad \mathbb{E}[X^4] = 3$
 $\mathbb{E}[X^5] = 0 \quad \mathbb{E}[X^6] \neq 15$

•
$$W \sim \mathcal{N}(0,1)$$
 with density $\varphi(w) = \frac{1}{\sqrt{2\pi}} \exp(-\frac{w^2}{2})$

atom
$$x_i = \text{root of } P_m(x) = \frac{(-1)^m}{\varphi(x)} \frac{d^m \varphi(x)}{dx^m}$$
, with probability $p_i = \frac{(m-1)!}{mP_{m-1}^2(x_i)}$
 $P_4(x), p_i$
 $\mathbb{E}[X] = 0 \quad \mathbb{E}[X^2] = 1$
 $\mathbb{E}[X^3] = 0 \quad \mathbb{E}[X^4] = 3$
 $\mathbb{E}[X^5] = 0 \quad \mathbb{E}[X^6] = 15$
 $\mathbb{E}[X^7] = 0 \quad \mathbb{E}[X^8] \neq 105$

•
$$W \sim \mathcal{N}(0,1)$$
 with density $\varphi(w) = \frac{1}{\sqrt{2\pi}} \exp(-\frac{w^2}{2})$

atom
$$x_i = \text{root of } P_m(x) = \frac{(-1)^m}{\varphi(x)} \frac{d^m \varphi(x)}{dx^m}$$
, with probability $p_i = \frac{(m-1)!}{mP_{m-1}^2(x_i)}$
 $P_5(x), p_i$
 $\mathbb{E}[X] = 0 \quad \mathbb{E}[X^2] = 1$
 $\mathbb{E}[X^3] = 0 \quad \mathbb{E}[X^4] = 3$
 $\mathbb{E}[X^5] = 0 \quad \mathbb{E}[X^6] = 15$
 $\mathbb{E}[X^7] = 0 \quad \mathbb{E}[X^8] = 105$
 $\mathbb{E}[X^9] = 0 \quad \mathbb{E}[X^{10}] \neq 1155$

•
$$W \sim \mathcal{N}(0,1)$$
 with density $\varphi(w) = \frac{1}{\sqrt{2\pi}} \exp(-\frac{w^2}{2})$

• "Gauss-Hermite quadrature" X_m^Q with *m* atoms matches 2m - 1 moments:

atom
$$x_i = \text{root of } P_m(x) = \frac{(-1)^m}{\varphi(x)} \frac{d^m \varphi(x)}{dx^m}$$
, with probability $p_i = \frac{(m-1)!}{mP_{m-1}^2(x_i)}$
 $P_5(x), p_i$
 $\mathbb{E}[X] = 0 \quad \mathbb{E}[X^2] = 1$
 $\mathbb{E}[X^3] = 0 \quad \mathbb{E}[X^4] = 3$
 $\mathbb{E}[X^5] = 0 \quad \mathbb{E}[X^6] = 15$
 $\mathbb{E}[X^7] = 0 \quad \mathbb{E}[X^8] = 105$
 $\mathbb{E}[X^9] = 0 \quad \mathbb{E}[X^{10}] \neq 1155$

• optimal trade-off of atoms to moments matched

3 Application to a hypothesis testing problem

$$\mathbb{H}[X] = \sum_{i} p_i \log \frac{1}{p_i} = -\mathbb{E}[\log \mu(\{X\})]$$

• for discrete X with probability masses $p_i > 0$, define entropy as

$$\mathbb{H}[X] = \sum_{i} p_i \log \frac{1}{p_i} = -\mathbb{E}[\log \mu(\{X\})]$$

• measure of information/randomness/complexity

• for discrete X with probability masses $p_i > 0$, define entropy as

$$\mathbb{H}[X] = \sum_{i} p_i \log \frac{1}{p_i} = -\mathbb{E}[\log \mu(\{X\})]$$

• measure of information/randomness/complexity; fundamental compressibility limit

$$\mathbb{H}[X] = \sum_{i} p_i \log \frac{1}{p_i} = -\mathbb{E}[\log \mu(\{X\})]$$

- measure of information/randomness/complexity; fundamental compressibility limit
- back to Gaussian moment matching: $\mathbb{H}[X^Q_m] pprox rac{1}{2}\log m o \infty$ as $m o \infty$

Entropy-constrained moment problem

$$\mathbb{H}[X] = \sum_{i} p_i \log \frac{1}{p_i} = -\mathbb{E}[\log \mu(\{X\})]$$

- measure of information/randomness/complexity; fundamental compressibility limit
- back to Gaussian moment matching: $\mathbb{H}[X_m^Q] \approx rac{1}{2}\log m o \infty$ as $m o \infty$
- can we find $(X_k)_k$ such that $\mathbb{H}[X_k] \le h < \infty$ and $\mathbb{E}[X_k^n] = \mathbb{E}[W^n]$ for $n = 1, \ldots, k$?

Entropy-constrained moment problem

$$\mathbb{H}[X] = \sum_{i} p_i \log \frac{1}{p_i} = -\mathbb{E}[\log \mu(\{X\})]$$

- measure of information/randomness/complexity; fundamental compressibility limit
- back to Gaussian moment matching: $\mathbb{H}[X_m^Q] \approx rac{1}{2}\log m o \infty$ as $m o \infty$
- can we find $(X_k)_k$ such that $\mathbb{H}[X_k] \le h < \infty$ and $\mathbb{E}[X_k^n] = \mathbb{E}[W^n]$ for $n = 1, \ldots, k$?
- no (would imply weak convergence to W + lower semi-continuity of \mathbb{H})

Entropy-constrained moment problem

$$\mathbb{H}[X] = \sum_{i} p_i \log \frac{1}{p_i} = -\mathbb{E}[\log \mu(\{X\})]$$

- measure of information/randomness/complexity; fundamental compressibility limit
- back to Gaussian moment matching: $\mathbb{H}[X_m^Q] \approx rac{1}{2}\log m o \infty$ as $m o \infty$
- can we find $(X_k)_k$ such that $\mathbb{H}[X_k] \le h < \infty$ and $\mathbb{E}[X_k^n] = \mathbb{E}[W^n]$ for $n = 1, \ldots, k$?
- no (would imply weak convergence to W + lower semi-continuity of \mathbb{H})
- how many moments can we match if entropy is at most *h* then?

Theorem

Theorem

For any continuous W, there exists $\eta_W \in (0, \frac{1}{2})$ such that

Theorem

For any continuous W, there exists $\eta_W \in (0, \frac{1}{2})$ such that (i) if X has $\mathbb{E}[X^n] = \mathbb{E}[W^n]$ for n = 1, 2, 3, 4, then $\mathbb{H}[X] \ge h_2(\eta_W)$.

Theorem

For any continuous W, there exists $\eta_W \in (0, \frac{1}{2})$ such that

(i) if X has $\mathbb{E}[X^n] = \mathbb{E}[W^n]$ for n = 1, 2, 3, 4, then $\mathbb{H}[X] \ge h_2(\eta_W)$.

(ii) for any h > 0, there is X with $\mathbb{H}[X] \le h$ and $\mathbb{E}[X^n] = \mathbb{E}[W^n]$ for n = 1, 2, 3.

Theorem

For any continuous W, there exists $\eta_W \in (0, \frac{1}{2})$ such that

(i) if X has $\mathbb{E}[X^n] = \mathbb{E}[W^n]$ for n = 1, 2, 3, 4, then $\mathbb{H}[X] \ge h_2(\eta_W)$.

(ii) for any h > 0, there is X with $\mathbb{H}[X] \le h$ and $\mathbb{E}[X^n] = \mathbb{E}[W^n]$ for n = 1, 2, 3.

Proof idea

Theorem

For any continuous W, there exists $\eta_W \in (0, \frac{1}{2})$ such that

(i) if X has
$$\mathbb{E}[X^n] = \mathbb{E}[W^n]$$
 for $n = 1, 2, 3, 4$, then $\mathbb{H}[X] \ge h_2(\eta_W)$.

(ii) for any h > 0, there is X with $\mathbb{H}[X] \le h$ and $\mathbb{E}[X^n] = \mathbb{E}[W^n]$ for n = 1, 2, 3.

Proof idea

•
$$\mathbb{H}[X] \le h < \log 2 \iff X = \begin{cases} \tilde{X} & \text{w.p. } \epsilon < 1/2 \\ x_0 & \text{w.p. } 1 - \epsilon > 1/2 \end{cases}$$

Theorem

For any continuous W, there exists $\eta_W \in (0, \frac{1}{2})$ such that

(i) if X has
$$\mathbb{E}[X^n] = \mathbb{E}[W^n]$$
 for $n = 1, 2, 3, 4$, then $\mathbb{H}[X] \ge h_2(\eta_W)$.

(ii) for any h > 0, there is X with $\mathbb{H}[X] \le h$ and $\mathbb{E}[X^n] = \mathbb{E}[W^n]$ for n = 1, 2, 3.

Proof idea

•
$$\mathbb{H}[X] \le h < \log 2 \iff X = \begin{cases} \tilde{X} & \text{w.p. } \epsilon < 1/2\\ x_0 & \text{w.p. } 1 - \epsilon > 1/2 \end{cases}$$

• need $\mathbb{E}[\tilde{X}^n] = s_n \coloneqq \frac{1}{\epsilon} (\mathbb{E}[W^n] - (1 - \epsilon)x_0^n)$

Theorem

For any continuous W, there exists $\eta_W \in (0, \frac{1}{2})$ such that

(i) if X has
$$\mathbb{E}[X^n] = \mathbb{E}[W^n]$$
 for $n = 1, 2, 3, 4$, then $\mathbb{H}[X] \ge h_2(\eta_W)$.

(ii) for any h > 0, there is X with $\mathbb{H}[X] \le h$ and $\mathbb{E}[X^n] = \mathbb{E}[W^n]$ for n = 1, 2, 3.

Proof idea

•
$$\mathbb{H}[X] \le h < \log 2 \iff X = \begin{cases} \tilde{X} & \text{w.p. } \epsilon < 1/2 \\ x_0 & \text{w.p. } 1 - \epsilon > 1/2 \end{cases}$$

• need $\mathbb{E}[\tilde{X}^n] = s_n \coloneqq \frac{1}{\epsilon} (\mathbb{E}[W^n] - (1 - \epsilon)x_0^n)$

• check: s_1, \ldots, s_4 "valid" iff $\epsilon > \eta_W$, but s_1, s_2, s_3 always "valid"

Theorem

For any continuous W, there exists $\eta_W \in (0, \frac{1}{2})$ such that

(i) if X has
$$\mathbb{E}[X^n] = \mathbb{E}[W^n]$$
 for $n = 1, 2, 3, 4$, then $\mathbb{H}[X] \ge h_2(\eta_W)$.

(ii) for any h > 0, there is X with $\mathbb{H}[X] \le h$ and $\mathbb{E}[X^n] = \mathbb{E}[W^n]$ for n = 1, 2, 3.

Theorem

For any continuous W, there exists $\eta_W \in (0, \frac{1}{2})$ such that (i) if X has $\mathbb{E}[X^n] = \mathbb{E}[W^n]$ for n = 1, 2, 3, 4, then $\mathbb{H}[X] \ge h_2(\eta_W)$. (ii) for any h > 0, there is X with $\mathbb{H}[X] \le h$ and $\mathbb{E}[X^n] = \mathbb{E}[W^n]$ for n = 1, 2, 3.

For symmetric W,

$$\eta_{W} = \begin{cases} \frac{\mathbb{E}[W^{2}]^{2}}{\mathbb{E}[X^{4}]} & \text{if } \frac{\mathbb{E}[W^{2}]^{2}}{\mathbb{E}[X^{4}]} \leq \frac{1}{3}, \\\\ \frac{5\mathbb{E}[W^{2}]^{2} - \mathbb{E}[W^{4}]}{9\mathbb{E}[W^{2}]^{2} - \mathbb{E}[W^{4}]} & \text{if } \frac{\mathbb{E}[W^{2}]^{2}}{\mathbb{E}[X^{4}]} > \frac{1}{3}. \end{cases}$$

Theorem

For any continuous W, there exists $\eta_W \in (0, \frac{1}{2})$ such that (i) if X has $\mathbb{E}[X^n] = \mathbb{E}[W^n]$ for n = 1, 2, 3, 4, then $\mathbb{H}[X] \ge h_2(\eta_W)$. (ii) for any h > 0, there is X with $\mathbb{H}[X] \le h$ and $\mathbb{E}[X^n] = \mathbb{E}[W^n]$ for n = 1, 2, 3.

Theorem

For any continuous W, there exists $\eta_W \in (0, \frac{1}{2})$ such that (i) if X has $\mathbb{E}[X^n] = \mathbb{E}[W^n]$ for n = 1, 2, 3, 4, then $\mathbb{H}[X] \ge h_2(\eta_W)$. (ii) for any h > 0, there is X with $\mathbb{H}[X] \le h$ and $\mathbb{E}[X^n] = \mathbb{E}[W^n]$ for n = 1, 2, 3.

Outline

2 Entropy-constrained version

3 Application to a hypothesis testing problem

• observe *n* i.i.d. samples $Y_i = X_i + Z_i$

• observe *n* i.i.d. samples $Y_i = X_i + Z_i$ with $Z_i \sim Z \sim \mathcal{N}(0, \sigma^2)$ independent of $X_i, \sigma \to \infty$

• observe *n* i.i.d. samples $Y_i = X_i + Z_i$ with $Z_i \sim Z \sim \mathcal{N}(0, \sigma^2)$ independent of $X_i, \sigma \to \infty$

•
$$H = 0: \quad X_i \sim X ext{ discrete with } \mathbb{H}[X] \leq h$$

 $H = 1: \quad X_i \sim G \sim \mathcal{N}(0, 1)$

• observe *n* i.i.d. samples $Y_i = X_i + Z_i$ with $Z_i \sim Z \sim \mathcal{N}(0, \sigma^2)$ independent of $X_i, \sigma \to \infty$

•
$$H = 0: \quad X_i \sim X \text{ discrete with } \mathbb{H}[X] \leq h \\ H = 1: \quad X_i \sim G \sim \mathcal{N}(0, 1)$$
 decide $\hat{H} \in \{0, 1\}$ from Y^n

• observe *n* i.i.d. samples $Y_i = X_i + Z_i$ with $Z_i \sim Z \sim \mathcal{N}(0, \sigma^2)$ independent of $X_i, \sigma \to \infty$

•
$$H = 0: \quad X_i \sim X ext{ discrete with } \mathbb{H}[X] \leq h \ H = 1: \quad X_i \sim G \sim \mathcal{N}(0, 1)$$
 decide $\hat{H} \in \{0, 1\}$ from Y^n

• type-I error: $\Pr{\{\hat{H} = 1 \mid H = 0\}}$ and type-II error: $\Pr{\{\hat{H} = 0 \mid H = 1\}}$

• observe *n* i.i.d. samples $Y_i = X_i + Z_i$ with $Z_i \sim Z \sim \mathcal{N}(0, \sigma^2)$ independent of $X_i, \sigma \to \infty$

•
$$H = 0: \quad X_i \sim X ext{ discrete with } \mathbb{H}[X] \leq h \ H = 1: \quad X_i \sim G \sim \mathcal{N}(0, 1)$$
 decide $\hat{H} \in \{0, 1\}$ from Y^n

• type-I error: $\Pr{\{\hat{H} = 1 \mid H = 0\}}$ and type-II error: $\Pr{\{\hat{H} = 0 \mid H = 1\}}$

• Stein regime: type-I error $\leq \epsilon < 1$

• observe *n* i.i.d. samples $Y_i = X_i + Z_i$ with $Z_i \sim Z \sim \mathcal{N}(0, \sigma^2)$ independent of $X_i, \sigma \to \infty$

•
$$H = 0: \quad X_i \sim X ext{ discrete with } \mathbb{H}[X] \leq h \ H = 1: \quad X_i \sim G \sim \mathcal{N}(0, 1)$$
 decide $\hat{H} \in \{0, 1\}$ from Y^n

• type-I error:
$$\Pr{\{\hat{H}=1\mid H=0\}}$$
 and type-II error: $\Pr{\{\hat{H}=0\mid H=1\}}$

• Stein regime:

type-I error $\leq \epsilon < 1$ and type-II error $\leq \exp\left[-n \operatorname{D}_{\mathsf{KL}}(X + Z \parallel G + Z) + \operatorname{o}(n)\right]$

• observe *n* i.i.d. samples $Y_i = X_i + Z_i$ with $Z_i \sim Z \sim \mathcal{N}(0, \sigma^2)$ independent of $X_i, \sigma \to \infty$

•
$$H = 0: \quad X_i \sim X ext{ discrete with } \mathbb{H}[X] \leq h \ H = 1: \quad X_i \sim G \sim \mathcal{N}(0, 1)$$
 decide $\hat{H} \in \{0, 1\}$ from Y^n

• type-I error:
$$\Pr{\{\hat{H}=1\mid H=0\}}$$
 and type-II error: $\Pr{\{\hat{H}=0\mid H=1\}}$

• Stein regime: type-I error $\leq \epsilon < 1$ and type-II error $\leq \exp \left[-n D_{\mathsf{KL}}(X + Z \parallel G + Z) + o(n)\right]$

• worst-case exponent =
$$\min_{X : \mathbb{H}[X] \le h} \mathsf{D}_{\mathsf{KL}}(X + Z \parallel G + Z)$$

• observe *n* i.i.d. samples $Y_i = X_i + Z_i$ with $Z_i \sim Z \sim \mathcal{N}(0, \sigma^2)$ independent of $X_i, \sigma \to \infty$

•
$$H = 0: \quad X_i \sim X ext{ discrete with } \mathbb{H}[X] \leq h \ H = 1: \quad X_i \sim G \sim \mathcal{N}(0, 1)$$
 decide $\hat{H} \in \{0, 1\}$ from Y^n

• type-I error:
$$\Pr{\{\hat{H}=1\mid H=0\}}$$
 and type-II error: $\Pr{\{\hat{H}=0\mid H=1\}}$

• Stein regime: type-I error $\leq \epsilon < 1$ and type-II error $\leq \exp \left[-n D_{\mathsf{KL}}(X + Z \parallel G + Z) + o(n)\right]$

• worst-case exponent
$$= \min_{X : \boxplus[X] \le h} D_{\mathsf{KL}}(X + Z \parallel G + Z) = \Theta(\frac{1}{\sigma^8})$$
 for $h < h_2(\frac{1}{3})$

• observe *n* i.i.d. samples $Y_i = X_i + Z_i$ with $Z_i \sim Z \sim \mathcal{N}(0, \sigma^2)$ independent of $X_i, \sigma \to \infty$

$$\left. \begin{array}{ll} H=0: & X_i \sim X \text{ discrete with } \mathbb{H}[X] \leq h \\ H=1: & X_i \sim G \sim \mathcal{N}(0,1) \end{array} \right\} \text{ decide } \hat{H} \in \{0,1\} \text{ from } Y^n$$

• type-I error:
$$\Pr\{\hat{H}=1\mid H=0\}$$
 and type-II error: $\Pr\{\hat{H}=0\mid H=1\}$

• Stein regime: type-I error $\leq \epsilon < 1$ and type-II error $\leq \exp \left[-n D_{\mathsf{KL}}(X + Z \parallel G + Z) + o(n)\right]$

• worst-case exponent
$$= \min_{X : \mathbb{H}[X] \le h} D_{\mathsf{KL}}(X + Z \parallel G + Z) = \Theta(\frac{1}{\sigma^8}) \text{ for } h < h_2(\frac{1}{3})$$

• proof: Taylor expansion, k^{th} term depends on first k moments, can match only 3 moments

• entropy-constrained moment problem

- entropy-constrained moment problem
- can match only three moments if the entropy is "small"

- entropy-constrained moment problem
- can match only three moments if the entropy is "small"
- many applications

- entropy-constrained moment problem
- can match only three moments if the entropy is "small"
- many applications, example: hypothesis testing

- entropy-constrained moment problem
- can match only three moments if the entropy is "small"
- many applications, example: hypothesis testing

Thank you!