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Abstract—The notion of hypercontractivity has been well-
studied as a mathematical tool during the last five decades.
Numerous powerful applications have been discovered in quan-
tum physics, Fourier analysis, theoretical computer science, and
even probability theory, but surprisingly, remains underutilized
in information theory. The goal here is to study and document
the progress that has been made so far. Starting with a simple
question about the size of “decoding sets” as in channel coding,
we see that answering a more general question instead leads
to unexpected connections with various information measures.
We also look at some applications of hypercontractivity in
solving information-theoretic problems, and comment on what
improvements can be made.

Index Terms—hypercontractivity, Markov operators, infor-
mation measures, contraction coefficients, maximal correlation,
Boolean functions

I. INTRODUCTION1

INFORMATION theorists, particularly in the style of
Csiszár and Körner [1], frequently make use of “decoding

sets” to prove achievability and converse results in coding
theorems. These decoding sets are simply the sets B ⊆ Y
such that for some A ⊆ X , the probability W(B | x) ≥ λ for
all x ∈ A, for some large enough λ ∈ (0, 1). In the channel
coding problem, these represent the sets that any input x ∈ A
has a high probability to get sent to, when transmitted over the
channel W. For a given B, define gλ(B) to be the set of all
x ∈ X such that W(B | x) ≥ λ, i.e., the set of input messages
that are likely to end up in the same output set. The goal of
channel coding is then to have B as small as possible while
still allowing the resolution of X into disjoint sets of the form
gλ(B). More generally, we can pose the following problem:
for Xn = (X1, . . . , Xn) and Y n = (Y1, . . . , Yn), where each
(Xi, Yi) is an independent, identically distributed (i.i.d.) copy
of (X,Y ), and sets A ⊆ Xn, B ⊆ Yn, under the requirement
that W (B | A) ≥ λ, what is the relation between P(Y n ∈ B)
and P(Xn ∈ A)?

Ahlswede and Gács [2] give us a lower bound for P(Y n ∈
B) in terms of P(Xn ∈ A), by showing that there exist
positive numbers r < 1 and p such that

P(Y n ∈ B) ≥ W(B | A)p P(Xn ∈ A)r,

under the assumption that the distribution of (Xi, Yi) is
indecomposable, i.e., there do not exist nontrivial sets A and
B such that P(Xn ∈ A if and only if Y n ∈ B) = 1.

By rearranging terms, the above inequality is equivalent to

P(Xn ∈ A, Y n ∈ B) ≤ P(Xn ∈ A)1−
r
p P(Y n ∈ B)

1
p .

1The (standard) notation used is explained in Section II.

For r ≥ 1, this is always true, as it is simply a special case of
Hölder’s inequality2 applied to the p-norm ∥X∥p = E[|X|p]

1
p ,

and the fact that the p-norm is nondecreasing in p. Thus,
Ahlswede and Gács [2] study the more general question: do
there also exist some numbers r < 1 and p > 0 such that

E[|f(X)g(Y )|] ≤ ∥f(X)∥p′∥g(Y )∥q

for all bounded functions f and g, where p′ is the Hölder
conjugate of p, and q = pr < p? This is easily seen to be
equivalent to the following: do there exist r < 1 and p > 0
such that

∥E[g(Y ) | X]∥p ≤ ∥g(Y )∥q

for all bounded functions g, where q = pr < p? Going one
step further and defining the Markov operator T , which takes
bounded functions on Y to bounded functions on X , as

(Tg)(x) = E[g(Y ) | X = x], (1)

the above is also equivalent to ∥(Tg)(X)∥p ≤ ∥g(Y )∥pr. This
is always true when r = 1, i.e., ∥(Tg)(X)∥p ≤ ∥g(Y )∥p for
all g, and hence T “contracts” its arguments (as expected with
bounded operators). However, when r < 1, the right-hand side
decreases, but we still want this stronger inequality to hold—
hence the term “hyper–contractivity”.

This write-up is centered on the three background papers
[2], [3], [4]. Beginning as above, Ahlswede and Gács [2]
go on to study the above problem in detail, defining rele-
vant “hypercontractivity parameters” (Section II-C), obtaining
estimates and discovering several properties for the smallest
such r (Section III). Among these properties, we see the
unexpected appearance of various information measures in
the characterization of these parameters; this connection was
studied and generalized by Chandra Nair [3]. Anantharam et
al. [4] then use some properties of hypercontractivity to study
a more natural information-theoretic problem—on the mutual
information between Boolean functions [5]. We look at this,
along with other applications, in Section IV. The goal of this
write-up is to examine how information theory can benefit
from having mathematical tools such as hypercontractivity,
while simultaneously contributing to the development of the
theory of hypercontractivity itself.

II. PRELIMINARIES

In this section, we establish the notation that is used
throughout this write-up (we follow standard conventions,
but this is for completeness), and then define the relevant
hypercontractivity terms.

2∥f(X)g(Y )∥1 ≤ ∥f(X)∥p∥g(Y )∥p′ for all p, p′ > 1 with 1
p
+ 1

p′ = 1;
such p, p′ are called Hölder conjugates of each other.
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A. Notation

Let X and Y be two finite sets, and (X,Y ) be a pair of
random variables on X × Y , with the joint probability mass
function (pmf) µXY , which we denote as (X,Y ) ∼ µXY . Let
µX and µY be the marginal pmfs of X and Y respectively. We
assume an underlying probability measure P, and sometimes
say P(X ∈ A) to mean

∑
x∈A µX(x). Further, let WY |X or

simply W denote the conditional pmf of Y given X , i.e., W(y |
x) = µXY (x,y)

µX(x) , called the channel from X to Y . Given any
distribution µX and a channel W, we define the corresponding
“channel output” distribution µY as the marginal distribution
induced by the channel, i.e., µY (y) =

∑
x∈X µX(x)W(y | x).

We also abuse notation in the following standard manner:
for Xn = (X1, . . . , Xn) and Y n = (Y1, . . . , Yn), where each
(Xi, Yi) ∼ µXY i.i.d., we also use µX(A) = P(Xn ∈ A),
W(yn | xn) = Wn(yn | xn) = P(Y n = yn | Xn = xn),
and W(B | A) = P(Y n ∈ B | Xn ∈ A), for A ⊆ Xn and
B ⊆ Yn.

The expectation of any function f of a random variable X
is given by EµX

[f(X)] ≜
∑

x∈X µX(x) f(x); we simply say
E[f(X)] when the distribution is clear. The indicator function
of a set A is defined as follows: 1A(x) = 1 when x ∈ A and
0 otherwise. All logarithms are taken to the base 2.

B. Information measures

Given two distributions νX and µX on X , we say that νX
is absolutely continuous w.r.t. µX , if νX(x) = 0 for some
x ∈ X implies that µX(x) = 0; this is denoted as νX ≪ µX .
We then define the KL-divergence from µX to νX as

DKL(νX ||µX) ≜
∑
x∈X

νX(x) log
νX(x)

µX(x)
.

For any pair of random variables (X,Y ) ∼ µXY , we de-
fine the mutual information between them as I(X;Y ) ≜
DKL(µXY ||µXµY ), and the entropy of X as H(X) ≜
I(X;X). In particular, we require the entropy of {0, 1}-valued
random variables, so for X with µX(0) = p = 1 − µX(1),
define

h2(p) ≜ H(X) = −p log p− (1− p) log(1− p). (2)

Also of interest to us is the maximal correlation between X
and Y , given by

ρm(X;Y ) ≜ sup
(f(X),g(Y ))∈S

E[f(X)g(Y )],

where S is the collection of pairs of random variables
(f(X), g(Y )) such that E[f(X)] = E[g(Y )] = 0 and
E[f(X)2] = E[g(Y )2] = 1.

C. Hypercontractivity parameters

Given the random variable X ∼ µX , for p > 1, we define
the p-norm of any function f defined on X as

∥f(X)∥p ≜ E[|f(X)|p]
1
p =

(∑
x∈X

µX(x) |f(x)|p
) 1

p

.

It follows from the (strict) convexity of the mapping t 7→ tα

for α > 1, that the p-norm is nondecreasing in p (and is strictly
increasing if there exist x1 ̸= x2 with µX(x1), µX(x2) > 0
such that f(x1) ̸= f(x2)).

Following on from the discussion in Section I, we now
define some hypercontractivity parameters. We say that the
pair of random variables (X,Y ) is (p, q)-hypercontractive for
1 ≤ q ≤ p < ∞ if, for every bounded function g, we have

∥E[g(Y ) | X]∥p ≤ ∥g(Y )∥q,

or equivalently, ∥(Tg)(X)∥p ≤ ∥g(Y )∥q , where T is the
Markov operator defined in (1). For p ≥ 1, we define

qp(X;Y ) = inf{q : (X,Y ) is (p, q)-hypercontractive},

and rp(X;Y ) =
qp(X;Y )

p , i.e., rp(X;Y ) is the smallest r
such that ∥(Tg)(X)∥p ≤ ∥g(Y )∥pr for some fixed p ≥ 1.
We will also be interested in the quantity r∗(X;Y ) =
infp≥1 rp(X;Y ). When the random variables involved are
clear from context (or unimportant), we simply write rp and
r∗.

III. PROPERTIES OF HYPERCONTRACTIVITY PARAMETERS

We now study the quantities defined in Section II-C in more
detail, and see that in spite of their rather abstract definition,
they satisfy some useful properties, and that there is a deep
connection with several seemingly unrelated quantities. Full
proofs of most results are lengthy, so we do not describe them
here—they can be found in the original papers.

We start with some simple observations about rp and r∗

which follow from the p-norm being increasing in p. Before
doing so, we require the following definition (which was given
informally in Section I). A pair of random variables (X,Y )
is said to be decomposable if there exist sets A ⊆ X , B ⊆ Y
such that 0 < P(X ∈ A),P(Y ∈ B) < 1, and P(X ∈ A, Y ∈
B) + P(X ∈ Ac, Y ∈ Bc) = 1, i.e., with probability 1,
(X,Y ) is either in A × B or in Ac × Bc. The pair (X,Y )
is indecomposable if it is not decomposable. Note that this is
more general than the strong requirement of positivity, i.e.,
µXY (x, y) > 0 for every (x, y) ∈ X × Y . Indeed, even
if (X,Y ) were not indecomposable, we could split (X,Y )
into some number of indecomposable blocks and study them
separately.

Property 1 (Monotonicity [2]). The quantity rp is nonincreas-
ing in p, and r1 = 1. This implies that r∗ = infp≥1 rp =
limp→∞ rp. Further, if (X,Y ) is indecomposable, we also
have that rp(X;Y ) is strictly decreasing in p.

Property 2 (Tensorization [2]). For independent (but not
necessarily identically distributed) pairs of random variables
{(Xi, Yi)}ni=1,

rp(X
n;Y n) = max

i=1,...,n
rp(Xi;Yi).

In particular, if they all also happen to have the same
distribution as (X,Y ), then rp(X

n;Y n) = rp(X;Y ).
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Property 3 (Relation to maximal correlation [2]). The param-
eter rp(X;Y ) can be lower bounded in terms of ρm(X;Y ),
as

rp(X;Y ) ≥ p−1 + (1− p−1)ρm(X;Y )2.

Letting p → ∞, we have r∗(X;Y ) ≥ ρm(X;Y )2. On the
other hand, if X and Y are uncorrelated, this reduces to
rp(X;Y ) ≥ p−1; when X and Y are also independent, this
holds with equality, i.e., rp(X;Y ) = p−1.

Property 4 (Appearance of information measures). For
(X,Y ) ∼ µXY , Ahlswede and Gács [2] obtain a surprising
equivalent characterization of r∗ in terms of information
measures, as

r∗(X;Y ) = sup
νX :νX ̸=µX ,

νX≪µX

DKL(νY ||µY )

DKL(νX ||µX)
, (3)

where νY is the marginal distribution induced on Y by
νX through the same conditional distribution W. Nair [3]
generalizes this to any finite p ≥ 1, as

rp(X;Y ) =

sup
νXY :νXY ̸=µXY ,

νXY ≪µXY

DKL(νY ||µY )

pDKL(νXY ||µXY )− (p− 1)DKL(νX ||µX)
.

Similarly, Anantharam et al. [6] show another equivalent
characterization of r∗,

r∗(X;Y ) = sup
U :

U−X−Y,
I(U ;X)>0

I(U ;Y )

I(U ;X)
, (4)

which Nair [3] extends to any finite p ≥ 1, as

rp(X;Y ) =

sup

νUXY :
νUXY ∈Pµ,
I(U ;XY )>0

I(U ;Y )

pI(U ;XY )− (p− 1)I(U ;X)
,

where Pµ = {νUXY : U × X × Y → [0, 1], |U| ≤
|X ||Y|,

∑
u∈U νUXY (u, ·, ·) = µXY } is the set of distribu-

tions of (U,X, Y ) such that the marginal of (X,Y ) is µXY .

The above characterization of the hypercontractivity parame-
ters is remarkable, because it shows a connection with infor-
mation measures which appears seemingly out of nowhere.
Also surprising is that the proofs of the characterizations
for any finite p ≥ 1 due to Nair [3] are simpler and more
elegant than the proofs of (3) and (4) in the limiting case.
Among other things, this characterization makes the following
property almost trivial, since it follows immediately from the
convexity of DKL(· || ·).

Property 5 (Convexity [4]). Given a random variable X
with a fixed distribution µX , let the channel W, generating
the random variable Y ∼ µY , be varying. Then r∗(X;Y ) is
convex in W for a fixed µX .

While the above characterizations show us some connec-
tions between information-theoretic quantities and hypercon-
tractivity parameters, it is unclear how to compute rp or r∗

for a given (X,Y ). Property 6 gives a geometric interpretation

and computable characterization of rp (and hence r∗) as the
smallest λ at which some function of λ matches its lower
convex envelope3.

Property 6 (Geometric characterization). Let K[f ](x) denote
the lower convex envelope of the function f evaluated at the
point x. Anantharam et al. [6] show that for any pair of
random variables (X,Y ), where X ∼ µX and WY |X = W,

r∗(X;Y ) = inf{λ : K[tWλ ](µX) = tWλ (µX)},

where the function tWλ is defined on the set of distributions on
X as

tWλ (µ) = H(Y )− λH(X),

with X ∼ µ and Y generated from X by the conditional
distribution WY |X = W. Once again, Nair [3] generalizes
this to finite p ≥ 1, as

rp(X;Y ) = inf{λ : K[tWp,λ](µXY ) = tWp,λ(µXY )},

where the function tWp,λ is defined on the set of distributions
on (X,Y ) as

tWp,λ(µ) = H(Y )− λH(X)− pλH(Y | X).

Property 7 provides a neat dual relation between the max-
imizing distributions in the characterization (3) for binary-
valued random variables, which can be used to simplify the
computation of r∗.

Property 7 (A duality result [4]). Let (X,Y ) ∼ µXY be a pair
of binary-valued random variables. Let ν∗X be the maximizing
distribution in the characterization (3) of r∗(X;Y ) (this is
well-defined since the supremum is over a finite space). Define
the random variables (U, V ), with U ∼ ν∗X and WV |U =
WY |X . Then, µX is also the maximizing distribution in (3)
for r∗(U ;V ), and r∗(X;Y ) = r∗(U ;V ). Further, the line
segment connecting the curve P(X = 1) 7→ H(Y )−λH(X) at
the points µX(1) and ν∗X(1) exactly matches the lower convex
envelope of the same curve.

IV. APPLICATIONS TO INFORMATION THEORY

In this section, we make use of properties from Section
III to try and answer some information-theoretic problems.
It is worth noting that each of the problems considered is
of a different flavour and requires different techniques to be
studied, but hypercontractivity allows us to, if not solve, at
least view the problems from a unified perspective.

A. Probabilities of decoding sets

We start by returning to the example discussed in Section I
to motivate the study of hypercontractivity. As seen previously,
Ahlswede and Gács [2] show the following result.

Theorem 1. Given an i.i.d. sequence of random variables
{(Xi, Yi)}ni=1 such that (Xi, Yi) is indecomposable, for any

3The lower convex envelope K[f ] of a function f is given by K[f ](x) =
sup{g(x) : g is convex and g ≤ f on the entire domain of f}.
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sets A ⊆ Xn, B ⊆ Yn, there exist positive numbers r < 1
and p such that

P(Y n ∈ B) ≥ W(B | A)p P(Xn ∈ A)r.

Proof: Fix some p > 1, and let p′ be its Hölder conjugate.
Let Tn be the Markov operator associated with the channel
W (actually Wn), given by

(Tng)(xn) =
∑

yn∈Yn

g(yn)W(yn | xn),

for any bounded function g. By Hölder’s inequality, we have

P(Xn ∈ A, Y n ∈ B) =
∑

xn∈Xn

µXn(xn)1A(x
n)W(B | xn)

= E[|1A(X
n)(Tn

1B)(X
n)|]

≤ E[1A(X
n)p

′
]

1
p′ E[(Tn

1B)(X
n)p]

1
p

= P(Xn ∈ A)
1
p′ ∥(Tn

1B)(X
n)∥p

≤ P(Xn ∈ A)
1
p′ ∥1B(X

n)∥prp
= P(Xn ∈ A)1−

1
p P(Y n ∈ B)

1
prp ,

where we write rp = rp(Xi;Yi) = rp(X
n;Y n) by the

tensorization property. Rearranging the above, we have

P(Y n ∈ B) ≥ W(B | A)prp P(Xn ∈ A)rp

≥ W(B | A)p P(Xn ∈ A)rp .

Since (Xi, Yi) is indecomposable, we have that rp is strictly
decreasing in p. Together with r1 = 1, we have that rp < 1
for any p > 1, which completes the proof.

This result has a neat information-theoretic interpretation.
An idea that goes all the way back to Shannon [7] is to think
of the occurrence of an event with probability p as giving
us − log p units of “information”. Suppose we consider sets
A,B such that W(B | A) ≥ λ, some constant independent
of n (as is the case when B is a decoding set of A). If
we know that Xn ∈ A, i.e., our “information” about Xn is
− logP(Xn ∈ A), then our “information” about Y n is nearly
−rp logP(Xn ∈ A), i.e., a constant rp < 1 times lesser
(this interpretation is “more correct” as n → ∞, with the
assumption that P(Y n ∈ B) goes to zero exponentially in n).

B. Mutual information between Boolean functions

The data processing inequality [8] in information theory
states that for any random variables X ↔ Y ↔ Z forming
a Markov chain, I(X;Z) ≤ I(X;Y ), i.e., further processing
can only decrease the statistical dependence as measured by
the mutual information. This seemingly simple observation is
fundamental in information theory and has been used to prove
several classical converse results. As a direct consequence of
the characterization in (4), it is easy to see that the hypercon-
tractivity parameter r∗(X;Y ) also satisfies a data processing
inequality, i.e., for X ↔ Y ↔ Z, r∗(X;Z) ≤ r∗(X;Y ).

Additionally, when X and Y are independent, r∗(X;Y ) =
limp→∞ rp = limp→∞

1
p = 0, just like I(X;Y ). These

similarities seem to suggest that r∗ (or some appropriate
monotone function of it) can be used as a proxy to measure
the dependence between random variables, just like mutual

information or maximal correlation (which also satisfies a data
processing inequality). Indeed, another connection comes from
Property 5, which tells us that r∗(X;Y ) is convex in W for
a fixed µX ; this is also the case with I(X;Y ).

We now look at an application with this idea in mind. A
DSBS(α) (doubly symmetric binary source with parameter
α) is a pair of random variables (X,Y ) such that X and
Y are both i.i.d. Bernoulli

(
1
2

)
, and P(X = 0 | Y =

1) = P(X = 1 | Y = 0) = α
2 . Kumar and Courtade [5]

pose the following obvious-looking conjecture which (in their
words) is “the simplest, nontrivial embodiment of Boolean
functions in an information-theoretic context”. Given the se-
quence {(Xi, Yi)}ni=1 drawn i.i.d. from a DSBS(α), for any
Boolean function b : {0, 1}n → {0, 1}, the conjecture is that
I(b(Xn);Y n) ≤ I(Xi;Y

n) = 1−h2(α), for any i in 1, . . . , n.
While this seems trivial at first glance, a proof is not known
yet. Even a numerical proof is not possible, since n is arbitrary.

We can make some (marginal) progress using hypercon-
tractivity. From the characterization in (4), we have that
I(U ;Y ) ≤ r∗(X;Y ) I(U ;X) for any U − X − Y forming
a Markov Chain. Ahlswede and Gács [2] calculate that for a
DSBS(α), r∗(Xi;Yi) = (1 − 2α)2, so by the tensorization
property, r∗(Xn;Y n) = (1 − 2α)2. Let b be any Boolean
function, then taking U = b(Xn), we have

I(b(Xn);Y n) ≤ r∗(Xn;Y n) I(b(Xn);Xn)

= (1− 2α)2 H(b(Xn)) ≤ (1− 2α)2.

For all α ∈ [0, 1], (1− 2α2) ≥ 1− h2(α), but equality holds
at α = 0, 1, 1

2 , which seems to suggest some kind of local
tightness in the “low-noise” or “high-noise” regimes, but even
this fails since the first derivatives are unequal at α = 0, 1 and
the second derivatives are unequal at α = 1

2 (both of their first
derivatives are zero at α = 1

2 ).
Kumar and Courtade [5] also propose a weaker form of

the conjecture, namely that I(b1(Xn); b2(Y
n)) ≤ 1 − h2(α)

for all Boolean functions b1, b2. Instead, Anantharam et al. [4]
propose the following stronger form of this second conjecture,
in terms of the hypercontractivity parameter r∗.

Conjecture 1. For any pair of binary-valued random vari-
ables (W,Z),

I(W ;Z) ≤ 1− h2

(
1−

√
r∗(W ;Z)

2

)
(5)

Supposing for a moment that this conjecture is true, we
have, for {(Xi, Yi)}ni=1 i.i.d. as a DSBS(α),

I(b1(X
n); b2(Y

n)) ≤ 1− h2

(
1−

√
r∗(b1(Xn); b2(Y n))

2

)

≤ 1− h2

(
1−

√
r∗(Xn;Y n)

2

)

= 1− h2

(
1−

√
r∗(Xi;Yi)

2

)

= 1− h2

(
1−

√
(1− 2α)2

2

)
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= 1− h2(α).

In essence, rather than simply considering r∗ (which gives the
loose constant (1− 2α)2 instead of 1− h2(α)) as the mutual
information proxy, we look to use f(r∗) = 1− h2

(
1−

√
r∗

2

)
,

which is monotonically increasing and satisfies f(0) = 0,
f(1) = 1.

Anantharam et al. [4] analytically prove Conjecture 1 only
under some conditions on the distribution of (W,Z), which
includes, in particular, when the channel between them is
symmetric, i.e., P(Z = 1 | W = 0) = P(Z = 0 | W = 1).
Note, however, that this is not enough to prove the weaker
form of the Kumar-Courtade conjecture [5], since the functions
b1 and b2 could be arbitrary, destroying the symmetry of
(b1(X

n), b2(Y
n)).

Nonetheless, Conjecture 1 can be verified numerically, since
unlike the Kumar-Courtade conjecture, there is no arbitrary
n to deal with. This gives further reason to believe that the
weaker conjecture involving two Boolean functions is true.
Indeed, a proof for this weaker conjecture has been discovered
since, using Fourier-analytic techniques [9].

C. Strictness of strong data processing inequalities

The data processing inequality can be stated in more
generality than that in Section IV-B: given any fixed chan-
nel W from X to Y , for any distributions µX ̸= νX
on X , DKL(νY ||µY ) ≤ DKL(νX ||µX). In many cases,
however, a stronger result holds, namely that there exists
some constant ηKL(W) < 1 such that DKL(νY ||µY ) ≤
ηKL(W)DKL(νX ||µX), where the smallest such ηKL(W) is
called the contraction coefficient [10] of the channel W; such
a result is called a strong data processing inequality. We
may also consider input-dependent contraction coefficients by
fixing some µX together with the channel W, and letting
ηKL(µX ,W) < 1 be the smallest value such that

DKL(νY ||µY ) ≤ ηKL(µX ,W)DKL(νX ||µX)

for all νX ̸= µX . One notices immediately from the character-
ization in (3) that ηKL(µX ,W) = r∗(X;Y ). A natural question
to ask is whether this inequality holds with equality for some
νX , i.e., whether the coefficient ηKL(µX ,W) is achievable or
is only a limiting value. Ahlswede and Gács [2] provide an
exact characterization of the distributions for which equality
holds.

Theorem 2. The supremum in (3) is attained by some distri-
bution νX if and only if r∗(X;Y ) > ρ2m(X;Y ), or equiva-
lently (since r∗(X;Y ) ≥ ρ2m(X;Y ) in general), r∗(X;Y ) =
ρ2m(X;Y ) if and only if

ηKL(µX ,W) = r∗(X;Y ) >
DKL(νY || νY )
DKL(νX || νX)

for all νX ≪ µX .

D. Connections to learning theory

The Information Bottleneck (IB) problem was introduced
by Tishby et al. [11] as an information-theoretic approach

to learning. In particular, we consider a pair of correlated
random variables (X,Y ) ∼ µXY , where Y is some target
variable that we wish to study, and X is an observation that
depends on Y . The goal is to find a representation T (X) (that
may be randomized) which characterizes the trade-off between
T depending too much on X itself and not having enough
dependence on Y . Formally, the problem is

inf
T :

T−X−Y
I(Y ;T )≥α

I(X;T ) ≡ sup
T :

T−X−Y
I(X;T )≤α

I(Y ;T ),

and the relation with hypercontractivity is apparent, since the
optimization in the characterization (4) of r∗ has a similar
structure. This optimization problem was studied several years
before it was proposed in [11], by Witsenhausen and Wyner
[12], who obtained a geometric solution involving the lower
convex envelopes of certain curves, similar to that of r∗ and
rp in Property 6.

V. FUTURE PLANS AND CONCLUSION

While there is undoubtedly a clear connection between
hypercontractivity and information theory, as evidenced by
various useful characterizations and interpretations of hy-
percontractivity parameters in terms of information-theoretic
quantities, there have been only a small number of applica-
tions of hypercontractivity with conclusive results. One major
bottleneck is the lack of a closed form expression for rp or r∗,
making it difficult to actually put the properties to use. As a
result, we are constrained to rely exclusively on manipulations
that give us equivalent characterizations. Conversely, this also
means that making some progress on obtaining closed form
expressions for these parameters would almost simultaneously
provide answers to several seemingly unrelated questions that
are unified through the lens of hypercontractivity.

Thus, we are confident that hypercontractivity has the
potential to shed light on several areas of information the-
ory, particularly with the increasing interest from the rapidly
growing learning community. Even in cases where hypercon-
tractivity may not directly give us results, as in the attempts
at the Kumar-Courtade conjecture in Section IV-B, it is worth
noting that a solution was given by Fourier analysis, which
has benefited from decades of study using hypercontractive
techniques. Similarly, in a less technical sense, we believe that
hypercontractivity can (and should) be used as an effective tool
to supplement the study of information theory, and the cross-
pollination of such evidently related mathematical areas is sure
to bear fruit in due time.
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