Hypercontractivity and Information Theory

Adway Girish Information Theory Laboratory

June 9, 2023

Outline

- From Hölder to hypercontractivity
- 2 Application to probability theory
- Connection with information measures
- 4 Application to an information-theoretic problem
- Concluding remarks

Background papers

Ahlswede-Gács '76

Rudolf Ahlswede and Peter Gacs. "Spreading of Sets in Product Spaces and Hypercontraction of the Markov Operator". In: *The Annals of Probability* (1976)

Nair '14

Chandra Nair. "Equivalent formulations of hypercontractivity using information measures". In: *Proc. International Zurich Seminar on Communications*, 2014

Anantharam-Gohari-Kamath-Nair '13a

Venkat Anantharam, Amin Aminzadeh Gohari, Sudeep Kamath, and Chandra Nair. "On hypercontractivity and the mutual information between Boolean functions". In:

Proc. Allerton Conference on Communication, Control, and Computing. 2013

Hölder's inequality for probability measures

$$\mathbb{E}[|f(X)g(Y)|] \le ||f(X)||_{p'}||g(Y)||_{p}, \ p \ge 1$$

- $||Z||_p \triangleq \mathbb{E}[|Z|^p]^{\frac{1}{p}} \longleftarrow p$ -norm of Z

An equivalent formulation

$$\|\mathbb{E}[g(Y) \mid X]\|_{p} \le \|g(Y)\|_{p}, \ p \ge 1$$

- $||Z||_p \triangleq \mathbb{E}[|Z|^p]^{\frac{1}{p}} \longleftarrow p$ -norm of Z

More generally?

$$\|\mathbb{E}[g(Y) \mid X]\|_{p} \leq \|g(Y)\|_{q}$$
?

- ullet $q \geq p$ \longrightarrow always true
- ullet q < p \longrightarrow depends on μ_{XY}

Extreme cases:
$$X \perp \!\!\! \perp Y \implies q \ge 1$$
; $X = Y \implies q > p$.

Hypercontractivity parameters

Definition

For $1 \le q \le p < \infty$, (X, Y) is (p, q)-hypercontractive if

$$\|\mathbb{E}[g(Y) \mid X]\|_{p} \leq \|g(Y)\|_{q}.$$

Also define, for a given $p \ge 1$,

$$q_p(X; Y) \triangleq \inf\{q : (X, Y) \text{ is } (p, q)\text{-hypercontractive}\},$$
 $r_p(X; Y) \triangleq \frac{q_p(X; Y)}{p},$
 $r^*(X; Y) \triangleq \inf_{p \geq 1} r_p(X; Y) = \lim_{p \to \infty} r_p(X; Y).$

Extreme cases:
$$X \perp \!\!\! \perp Y \implies q_p = 1, \ r_p = \frac{1}{p}, \ r^* = 0;$$
 $X = Y \implies q_p = p, \ r_p = 1, \ r^* = 1.$

Indecomposable r.v.s

Definition

There do NOT exist nontrivial sets A and B such that

$$\mathbb{P}(X \in A \iff Y \in B) = 1.$$

 \longrightarrow decomposable

Probability of decoding sets

Theorem (Ahlswede-Gács '76)

For $\{(X_i, Y_i)\}_{i=1}^n$ i.i.d. and indecomposable, for any sets $A_n \subseteq \mathcal{X}^n$, $B_n \subseteq \mathcal{Y}^n$, there exist positive numbers r < 1 and p such that

$$\mathbb{P}(Y^n \in \mathcal{B}_n) \geq \mathbb{P}(Y^n \in \mathcal{B}_n \mid X^n \in \mathcal{A}_n)^p \, \mathbb{P}(X^n \in \mathcal{A}_n)^r.$$

• If
$$\mathbb{P}(Y^n \in B_n \mid X^n \in A_n) \ge \lambda$$
,
$$-\frac{1}{n} \log \mathbb{P}(Y^n \in B_n) \lesssim -\frac{r}{n} \log \mathbb{P}(X^n \in A_n).$$

Characterizations of r^* ...

Theorem (Ahlswede-Gács '76)

$$r^*(X;Y) = \sup_{\substack{\nu_X: \substack{\nu_X \neq \mu_X, \\ \nu_X \ll \mu_X}}} \frac{D_{\mathsf{KL}}(\nu_Y \mid\mid \mu_Y)}{D_{\mathsf{KL}}(\nu_X \mid\mid \mu_X)}.$$

Theorem (Anantharam-Gohari-Kamath-Nair '13b[†])

$$r^*(X; Y) = \sup_{\substack{\nu_{UX}: I(U;X) > 0, \ U-X-Y}} \frac{I(U; Y)}{I(U; X)}.$$

[†]Venkat Anantharam, Amin Aminzadeh Gohari, Sudeep Kamath, and Chandra Nair. "On Maximal Correlation, Hypercontractivity, and the Data Processing Inequality studied by Erkip and Cover". In: *CoRR* (2013)

...and r_p

Theorem (Nair '14)

$$r_{p}(X;Y) = \sup_{\substack{\nu_{XY}: \nu_{XY} \neq \mu_{XY}, \\ \nu_{XY} \ll \mu_{XY}}} \frac{D_{\mathsf{KL}}(\nu_{Y} || \mu_{Y})}{D_{\mathsf{KL}}(\nu_{X} || \mu_{X}) + p\binom{D_{\mathsf{KL}}(\nu_{XY} || \mu_{XY})}{-D_{\mathsf{KL}}(\nu_{X} || \mu_{X})}}.$$

Theorem (Nair '14)

$$r_p(X;Y) = \sup_{\substack{I(U;XY) > 0, \\ \nu_{UXY}: \sum_{u \in \mathcal{U}} \nu_{UXY}(u,\cdot,\cdot) = \mu_{XY}}} \frac{I(U;Y)}{I(U;X) + p\binom{I(U;XY)}{-I(U;X)}}.$$

A conjecture on Boolean functions

Conjecture (Courtade-Kumar '14[†])

For $\{(X_i, Y_i)\}_{i=1}^n$ i.i.d. DSBS(α), for any Boolean functions b_1 , b_2 ,

$$I(b_1(X^n); b_2(Y^n)) \leq 1 - h_2(\alpha).$$

A stronger conjecture on r^* of binary r.v.s

Conjecture (Anantharam-Gohari-Kamath-Nair '13a)

For any binary-valued W and Z,

$$I(W;Z) \leq 1 - h_2\left(\frac{1 - \sqrt{r^*(W;Z)}}{2}\right).$$

- $W X^n Y^n Z \implies r^*(W; Z) \le r^*(X^n; Y^n);$
- Tensorization: $r_p(X^n; Y^n) = \max_{i=1,...,n} r_p(X_i; Y_i);$
- $(X_i, Y_i) \sim \mathsf{DSBS}(\alpha) \implies r^*(X_i; Y_i) = (1 2\alpha)^2$.

Takeaways

- Connections to information-theoretic quantities
- Applications interesting, but...
- ...more work to be done!

Research proposal

- Computable characterizations of r_p and r^*
- Closed form expressions in particular cases
- More connections and applications to information theory

