# ICQ: A Quantization Scheme for Best-Arm Identification Over Bit-Constrained Channels

Fathima Z. Faizal, A.G., Manjesh K. Hanawal, Nikhil Karamchandani

Presented by: Adway Girish Information Theory Laboratory





August 25, 2023

| Classical | Best-Arm | Identification |
|-----------|----------|----------------|
|           |          |                |

#### Team



Fathima Zarin Faizal, EECS, MIT



Prof. Manjesh Hanawal, IEOR, IIT Bombay



Prof. Nikhil Karamchandani, EE, IIT Bombay

Qualcomm Innovation Fellowship India 2022 Winners

| Classical Best-Arm Identification | A Distributed Variant | Proposed Solution ICQ | Results<br>00 | Closing<br>00 |
|-----------------------------------|-----------------------|-----------------------|---------------|---------------|
|                                   |                       |                       |               |               |



Classical Best-Arm Identification

| Classical Best-Arm Identification | A Distributed Variant | Proposed Solution ICQ | Results<br>00 | Closing<br>00 |
|-----------------------------------|-----------------------|-----------------------|---------------|---------------|
|                                   |                       |                       |               |               |



Classical Best-Arm Identification

2 A Distributed Variant

| Classical Best-Arm Identification | A Distributed Variant | Proposed Solution ICQ | Results<br>00 | Closing<br>00 |
|-----------------------------------|-----------------------|-----------------------|---------------|---------------|
|                                   |                       |                       |               |               |



- 2 A Distributed Variant
- Proposed Solution ICQ

| Classical Best-Arm Identification | A Distributed Variant | Proposed Solution ICQ | Results<br>00 | Closing<br>00 |
|-----------------------------------|-----------------------|-----------------------|---------------|---------------|
|                                   |                       |                       |               |               |



Classical Best-Arm Identification

2 A Distributed Variant

Proposed Solution ICQ



| Classical Best-Arm Identification | A Distributed Variant | Proposed Solution ICQ | Results<br>00 | Closing<br>00 |
|-----------------------------------|-----------------------|-----------------------|---------------|---------------|
|                                   |                       |                       |               |               |



Classical Best-Arm Identification

2 A Distributed Variant

Proposed Solution ICQ





• K arms, each with a reward distribution

• K arms, each with a reward distribution (bounded\*)

• K arms, each with a reward distribution (bounded\*)



• K arms, each with a reward distribution (bounded\*)



[https://multithreaded.stitchfix.com/blog/2020/08/05/bandits/]

• Objective: find best arm

• K arms, each with a reward distribution (bounded\*)



[https://multithreaded.stitchfix.com/blog/2020/08/05/bandits/]

• Objective: find best arm — highest mean reward

# Best-arm identification: Fixed confidence

• K arms, each with a reward distribution (bounded\*)



- Objective: find best arm highest mean reward
- Fix confidence level  $\delta \in (0,1)$

# Best-arm identification: Fixed confidence

• K arms, each with a reward distribution (bounded\*)



- Objective: find best arm highest mean reward
- Fix confidence level  $\delta \in (0,1)$ ; want

$$\mathbb{P}( au_{\delta} < \infty, J_{ au_{\delta}} 
eq J^{*}) < \delta$$

# Best-arm identification: Fixed confidence

• K arms, each with a reward distribution (bounded\*)



- Objective: find best arm highest mean reward
- Fix confidence level  $\delta \in (0,1)$ ; want

$$\mathbb{P}(\tau_{\delta} < \infty, J_{\tau_{\delta}} \neq J^{*}) < \delta, \quad \text{``success w.h.p.''}$$





Round 1,  $S = \{1, 2, 3\}$ 









arms



arms

Round 3,  $S = \{1, 2, 3\}$ 



arms

Round 3,  $S = \{1, 2\}$ 



Round 4,  $S = \{1, 2\}$ 

empirical means



Round 4,  $S = \{2\}$ 

• Confidence width 
$$U'(i, \delta) = \sigma \sqrt{\frac{2 \log(4Ki^2/\delta)}{i}}$$

• Confidence width 
$$U'(i, \delta) = \sigma \sqrt{\frac{2\log(4Ki^2/\delta)}{i}}$$
  
• Gives  $\bigcup_{i=1}^{\infty} \bigcup_{j=1}^{K} \mathbb{P}\left(|\hat{\mu}_{j,i} - \mu_j| \ge U'(i, \delta)\right) < \delta$ 

• Confidence width 
$$U'(i, \delta) = \sigma \sqrt{\frac{2\log(4Ki^2/\delta)}{i}}$$
  
• Gives  $\bigcup_{i=1}^{\infty} \bigcup_{j=1}^{K} \mathbb{P}\left(|\hat{\mu}_{j,i} - \mu_j| \ge U'(i, \delta)\right) < \delta$ 

• Success w.h.p.!





. . .



- . . .









encode into **s**<sub>A,i</sub>

inactive in comm. round *i* 

pull arm, encode into **s**F.*i* 

3/10



encode into  $\mathbf{s}_{A,i}$ 

inactive in comm. round *i* 

pull arm, encode into **s**<sub>F,i</sub>

3/10



encode into  $\mathbf{s}_{A,i}$ 

inactive in comm. round *i* 

pull arm, encode into **s**<sub>F,i</sub>

3/10

| Classical Best-Arm Identification | A Distributed Variant<br>○●○ | Proposed Solution ICQ | Results<br>00 | Closing<br>00 |
|-----------------------------------|------------------------------|-----------------------|---------------|---------------|
|                                   |                              |                       |               |               |

# Prior Art
| Classical Best-Arm Identification | A Distributed Variant<br>○●○ | Proposed Solution ICQ | Results<br>00 | Closing<br>00 |
|-----------------------------------|------------------------------|-----------------------|---------------|---------------|
|                                   |                              |                       |               |               |
|                                   |                              |                       |               |               |

#### • Conventional MAB algos assume full-precision rewards\*

\*Lattimore and Szepesvári. Bandit algorithms. Cambridge University Press, 2020

- Conventional MAB algos assume full-precision rewards\*
- Adaptive quantization schemes with order-optimal regret<sup>†‡</sup>

\*Lattimore and Szepesvári. Bandit algorithms. Cambridge University Press, 2020

<sup>†</sup>Hanna, Yang, and Fragouli. "Solving multi-arm bandit using a few bits of communication". In: International Conference on Artificial Intelligence and Statistics. PMLR, 2022

<sup>‡</sup>Mitra, Hassani, and Pappas. *Linear Stochastic Bandits over a Bit-Constrained Channel*. 2022. arXiv: 2203.01198 [cs.LG]

- Conventional MAB algos assume full-precision rewards\*
- ullet Adaptive quantization schemes with order-optimal regret $^{\dagger\ddagger}$
- Pure exploration over bit-constrained channels§

\*Lattimore and Szepesvári. Bandit algorithms. Cambridge University Press, 2020

<sup>†</sup>Hanna, Yang, and Fragouli. "Solving multi-arm bandit using a few bits of communication". In: International Conference on Artificial Intelligence and Statistics. PMLR, 2022

<sup>‡</sup>Mitra, Hassani, and Pappas. *Linear Stochastic Bandits over a Bit-Constrained Channel*. 2022. arXiv: 2203.01198 [cs.LG]

- Conventional MAB algos assume full-precision rewards\*
- Adaptive quantization schemes with order-optimal regret $^{\dagger\ddagger}$
- Pure exploration over bit-constrained channels<sup>§</sup> but no control over B

\*Lattimore and Szepesvári. Bandit algorithms. Cambridge University Press, 2020

<sup>†</sup>Hanna, Yang, and Fragouli. "Solving multi-arm bandit using a few bits of communication". In: International Conference on Artificial Intelligence and Statistics. PMLR, 2022

<sup>‡</sup>Mitra, Hassani, and Pappas. *Linear Stochastic Bandits over a Bit-Constrained Channel*. 2022. arXiv: 2203.01198 [cs.LG]

- Conventional MAB algos assume full-precision rewards\*
- $\bullet\,$  Adaptive quantization schemes with order-optimal regret  $^{\dagger\ddagger}$
- Pure exploration over bit-constrained channels<sup>§</sup> but no control over B
- Our work:

\*Lattimore and Szepesvári. Bandit algorithms. Cambridge University Press, 2020

<sup>†</sup>Hanna, Yang, and Fragouli. "Solving multi-arm bandit using a few bits of communication". In: International Conference on Artificial Intelligence and Statistics. PMLR, 2022

<sup>‡</sup>Mitra, Hassani, and Pappas. *Linear Stochastic Bandits over a Bit-Constrained Channel*. 2022. arXiv: 2203.01198 [cs.LG]

- Conventional MAB algos assume full-precision rewards\*
- Adaptive quantization schemes with order-optimal regret $^{\dagger\ddagger}$
- Pure exploration over bit-constrained channels<sup>§</sup> but no control over B
- Our work: order-optimal sample complexity, clear dependence on B

\*Lattimore and Szepesvári. Bandit algorithms. Cambridge University Press, 2020

<sup>†</sup>Hanna, Yang, and Fragouli. "Solving multi-arm bandit using a few bits of communication". In: International Conference on Artificial Intelligence and Statistics. PMLR, 2022

<sup>‡</sup>Mitra, Hassani, and Pappas. *Linear Stochastic Bandits over a Bit-Constrained Channel*. 2022. arXiv: 2203.01198 [cs.LG]

| Classical Best-Arm Identification | A Distributed Variant | Proposed Solution ICQ | Results<br>00 | Closing<br>00 |
|-----------------------------------|-----------------------|-----------------------|---------------|---------------|
|                                   |                       |                       |               |               |

| Classical Best-Arm Identification | A Distributed Variant | Proposed Solution ICQ | Results<br>00 | Closing<br>00 |
|-----------------------------------|-----------------------|-----------------------|---------------|---------------|
|                                   |                       |                       |               |               |

• Communication complexity

| Classical Best-Arm Identification | A Distributed Variant<br>○○● | Proposed Solution ICQ | Results<br>00 | Closing<br>00 |
|-----------------------------------|------------------------------|-----------------------|---------------|---------------|
|                                   |                              |                       |               |               |
|                                   |                              |                       |               |               |

• Communication complexity  $\rightarrow$  few bits + exponentially sparse

| Classical Best-Arm Identification | A Distributed Variant<br>○○● | Proposed Solution ICQ | Results<br>00 | Closing<br>00 |
|-----------------------------------|------------------------------|-----------------------|---------------|---------------|
|                                   |                              |                       |               |               |

- $\bullet~\mbox{Communication complexity} \rightarrow \mbox{few bits} + \mbox{exponentially sparse}$
- Quantization error

| Classical Best-Arm Identification | A Distributed Variant | Proposed Solution ICQ | Results<br>00 | Closing<br>00 |
|-----------------------------------|-----------------------|-----------------------|---------------|---------------|
|                                   |                       |                       |               |               |

- $\bullet~\mbox{Communication complexity} \rightarrow \mbox{few bits} + \mbox{exponentially sparse}$
- Quantization error

$$|\tilde{\mu}_{j,i} - \mu_j|$$

| Classical Best-Arm Identification | A Distributed Variant<br>○○● | Proposed Solution ICQ | Results<br>00 | Closing<br>00 |
|-----------------------------------|------------------------------|-----------------------|---------------|---------------|
|                                   |                              |                       |               |               |
|                                   |                              |                       |               |               |

- $\bullet~\mbox{Communication complexity} \rightarrow \mbox{few bits} + \mbox{exponentially sparse}$
- Quantization error

$$\begin{split} |\tilde{\mu}_{j,i} - \mu_j| &\leq |\tilde{\mu}_{j,i} - \hat{\mu}_{j,i}| + |\hat{\mu}_{j,i} - \mu_j| \\ &= \text{ quantization error } + \text{ error in empirical mean} \end{split}$$

- $\bullet~$  Communication complexity  $\rightarrow~$  few bits +~ exponentially sparse
- Quantization error

$$\begin{split} |\tilde{\mu}_{j,i} - \mu_j| &\leq |\tilde{\mu}_{j,i} - \hat{\mu}_{j,i}| + |\hat{\mu}_{j,i} - \mu_j| \\ &= \text{ quantization error } + \text{ error in empirical mean} \end{split}$$

• We have 
$$\bigcup_{i=1}^{\infty} \bigcup_{j=1}^{K} \mathbb{P}\bigg( |\hat{\mu}_{j,i} - \mu_j| \ge U'(i,\delta) \bigg) < \delta$$

- $\bullet~\mbox{Communication complexity} \rightarrow \mbox{few bits} + \mbox{exponentially sparse}$
- Quantization error  $\rightarrow$  new confidence widths

$$\begin{split} |\tilde{\mu}_{j,i} - \mu_j| &\leq |\tilde{\mu}_{j,i} - \hat{\mu}_{j,i}| + |\hat{\mu}_{j,i} - \mu_j| \\ &= \text{ quantization error } + \text{ error in empirical mean} \end{split}$$

• We have 
$$\bigcup_{i=1}^{\infty} \bigcup_{j=1}^{K} \mathbb{P}\left( |\hat{\mu}_{j,i} - \mu_j| \ge U'(i,\delta) \right) < \delta$$
  
• We want  $\bigcup_{i=1}^{\infty} \bigcup_{j=1}^{K} \mathbb{P}\left( |\tilde{\mu}_{j,i} - \mu_j| \ge U(i,\delta) \right) < \delta$ 

| Classical Best-Arm Identification | A Distributed Variant | Proposed Solution ICQ<br>●○ | Results<br>00 | Closing<br>00 |
|-----------------------------------|-----------------------|-----------------------------|---------------|---------------|
|                                   |                       |                             |               |               |



| Classical Best-Arm Identification | A Distributed Variant | Proposed Solution ICQ<br>●○ | Results<br>00 | Closing<br>00 |
|-----------------------------------|-----------------------|-----------------------------|---------------|---------------|
|                                   |                       |                             |               |               |



| Classical Best-Arm Identification | A Distributed Variant | Proposed Solution ICQ<br>●○ | Results<br>00 | Closing<br>00 |
|-----------------------------------|-----------------------|-----------------------------|---------------|---------------|
|                                   |                       |                             |               |               |



| Classical Best-Arm Identification | A Distributed Variant | Proposed Solution ICQ<br>●○ | Results<br>00 | Closing<br>00 |
|-----------------------------------|-----------------------|-----------------------------|---------------|---------------|
|                                   |                       |                             |               |               |



| Classical Best-Arm Identification | A Distributed Variant | Proposed Solution ICQ<br>●○ | Results<br>00 | Closing<br>00 |
|-----------------------------------|-----------------------|-----------------------------|---------------|---------------|
|                                   |                       |                             |               |               |



| Classical Best-Arm Identification | A Distributed Variant | Proposed Solution ICQ<br>●○ | Results<br>00 | Closing<br>00 |
|-----------------------------------|-----------------------|-----------------------------|---------------|---------------|
|                                   |                       |                             |               |               |



| Classical Best-Arm Identification | A Distributed Variant | Proposed Solution ICQ<br>●○ | Results<br>00 | Closing<br>00 |
|-----------------------------------|-----------------------|-----------------------------|---------------|---------------|
|                                   |                       |                             |               |               |



| Classical Best-Arm Identification | A Distributed Variant | Proposed Solution ICQ<br>●○ | Results<br>00 | Closing<br>00 |
|-----------------------------------|-----------------------|-----------------------------|---------------|---------------|
|                                   |                       |                             |               |               |



| Classical Best-Arm Identification | A Distributed Variant | Proposed Solution ICQ<br>●○ | Results<br>00 | Closing<br>00 |
|-----------------------------------|-----------------------|-----------------------------|---------------|---------------|
|                                   |                       |                             |               |               |



| Classical Best-Arm Identification | A Distributed Variant | Proposed Solution ICQ<br>●○ | Results<br>00 | Closing<br>00 |
|-----------------------------------|-----------------------|-----------------------------|---------------|---------------|
|                                   |                       |                             |               |               |



| Classical Best-Arm Identification | A Distributed Variant | Proposed Solution ICQ<br>●○ | Results<br>00 | Closing<br>00 |
|-----------------------------------|-----------------------|-----------------------------|---------------|---------------|
|                                   |                       |                             |               |               |

• Quantize  $[\alpha, \beta]$  using B = 3 bits



• Quantization error for points in  $[\alpha, \beta] \leq$ 

| Classical Best-Arm Identification | A Distributed Variant | Proposed Solution ICQ<br>●○ | Results<br>00 | Closing<br>00 |
|-----------------------------------|-----------------------|-----------------------------|---------------|---------------|
|                                   |                       |                             |               |               |

• Quantize  $[\alpha, \beta]$  using B = 3 bits



• Quantization error for points in  $[\alpha, \beta] \leq \frac{\beta - \alpha}{2 \cdot 2^B}$ 

 $\rightarrow \mathbb{R}$ 















•  $|\tilde{\mu}_{j,i} - \mu_j| \le |\tilde{\mu}_{j,i} - \hat{\mu}_{j,i}| + |\hat{\mu}_{j,i} - \mu_j|$ =: quantization error + error in empirical mean



•  $|\tilde{\mu}_{j,i} - \mu_j| \le |\tilde{\mu}_{j,i} - \hat{\mu}_{j,i}| + |\hat{\mu}_{j,i} - \mu_j|$ =: quantization error + error in empirical mean

• Hence, define  $U(i, \delta) =$ 

+



•  $|\tilde{\mu}_{j,i} - \mu_j| \le |\tilde{\mu}_{j,i} - \hat{\mu}_{j,i}| + |\hat{\mu}_{j,i} - \mu_j|$ =: quantization error + error in empirical mean

• Hence, define  $U(i, \delta) = + U'(i, \delta)$
#### ICQ: Confidence intervals



•  $|\tilde{\mu}_{j,i} - \mu_j| \le |\tilde{\mu}_{j,i} - \hat{\mu}_{j,i}| + |\hat{\mu}_{j,i} - \mu_j|$ =: quantization error + error in empirical mean

• Hence, define  $U(i,\delta) = \frac{1}{2^B} \left[ U'(i,\delta) + U(i-1,\delta) \right] + U'(i,\delta)$ 

• ICQ-SE "succeeds w.h.p"

- ICQ-SE "succeeds w.h.p"
- $\bullet\,$  With probability  $\geq 1-\delta,$  the sample complexity

$$\tau^{\mathsf{ICQ-SE}}_{\delta} \leq \mathcal{O}\left(1 + \frac{1}{2^B}\right)\tau^{\mathsf{SE}}_{\delta}$$

- ICQ-SE "succeeds w.h.p"
- ${\, \bullet \, }$  With probability  $\geq 1-\delta,$  the sample complexity

$$\tau^{\mathsf{ICQ-SE}}_{\delta} \leq \mathcal{O}\left(1 + \frac{1}{2^B}\right)\tau^{\mathsf{SE}}_{\delta}$$

• Only constant factor overhead!

#### Numerical experiments

 ${\it K}=$  5 arms; means from  ${\sf Beta}(\gamma,1-\gamma)$  distribution,  $\gamma\sim{\sf Unif}([0,1])$ 



QuBan: Hanna, Yang, and Fragouli. "Solving multi-arm bandit using a few bits of communication". In: International Conference on Artificial Intelligence and Statistics. PMLR, 2022

Fed-SEL: Mitra, Hassani, and Pappas. *Exploiting Heterogeneity in Robust Federated Best-Arm Identification*. 2021. arXiv: 2109.05700 [cs.LG]

#### Numerical experiments

K = 5 arms; means from  $\mathsf{Beta}(\gamma, 1 - \gamma)$  distribution,  $\gamma \sim \mathsf{Unif}([0, 1])$ 



QuBan: Hanna, Yang, and Fragouli. "Solving multi-arm bandit using a few bits of communication". In: International Conference on Artificial Intelligence and Statistics. PMLR, 2022

Fed-SEL: Mitra, Hassani, and Pappas. *Exploiting Heterogeneity in Robust Federated* Best-Arm Identification. 2021. arXiv: 2109.05700 [cs.LG]

## Summary and future directions

• Proposed ICQ:

- Proposed ICQ:
  - Extends confidence-bound-based algorithms to bit-constrained settings

- Proposed ICQ:
  - Extends confidence-bound-based algorithms to bit-constrained settings
  - Updating confidence widths to account for quantization errors

- Proposed ICQ:
  - Extends confidence-bound-based algorithms to bit-constrained settings
  - Updating confidence widths to account for quantization errors
  - "Order-optimal" sample complexity

- Proposed ICQ:
  - Extends confidence-bound-based algorithms to bit-constrained settings
  - Updating confidence widths to account for quantization errors
  - "Order-optimal" sample complexity
- Future directions:

- Proposed ICQ:
  - Extends confidence-bound-based algorithms to bit-constrained settings
  - Updating confidence widths to account for quantization errors
  - "Order-optimal" sample complexity
- Future directions:
  - Lower bound

- Proposed ICQ:
  - Extends confidence-bound-based algorithms to bit-constrained settings
  - Updating confidence widths to account for quantization errors
  - "Order-optimal" sample complexity
- Future directions:
  - Lower bound
  - More distributed variants

# Thank you!