
EDIC Semester Project: Spring 2023

On Characterizing Nonlinear Strong Data Processing Inequalities

Adway Girish
Supervisor: Prof. Emre Telatar

Information Theory Laboratory (LTHI)

Last Updated: June 14, 2023

Abstract

The data processing inequality is a fundamental result in information theory. It states that
no further processing of data can generate new information that is not already present, or
equivalently, the information contained in any dataset can only decrease on further processing.
This statement can be strengthened by quantifying this decrease in information as a scaling by a
constant factor strictly smaller than 1, leading to strong data processing inequalities. However,
it has since been observed that such linear relations do not fully capture the true characteristics
of the decrease in information. Thus we study nonlinear data processing inequalities, which we
call data processing functions, and conjecture that these functions are concave. We also study
a specific example of these functions, namely for the KL divergence over the binary symmetric
channel, and see that even for this simple case, the conjecture is difficult to prove.

1 Introduction

The data processing inequality (DPI) [1] states that for any random variables U −X−Y forming a
Markov chain, I(U ;X) ≥ I(U ;Y ), i.e., further processing can only decrease the statistical depen-
dence as measured by the mutual information. It is natural to ask if we can say something stronger
about how much the information decreases, than simply that it does — the answer is yes, through
functions that exactly track how much the information decreases. The chain of developments lead-
ing to these functions, through strong data processing inequalities, is described in Section 3, after
we explain the notation used and provide definitions of standard quantities in Section 2. We then
conjecture that this curve is concave, and attempt to prove it in a special case, in Section 4.

The DPI in its basic form is a seemingly simple observation has been used in information theory
to great effect, particularly in proving several classical converse results. More recently, there has also
been increasing interest from the machine learning community, particularly since the introduction
of the Information Bottleneck (IB) paradigm [2], [3] to provide theoretical justifications for machine
learning algorithms. The IB problem asks how much information can be extracted about a random
variable by observing a function of it, without overfitting to the observations. This is made formal
and the connection is explained at the end, in Section 5.

2 Preliminaries

For completeness, we first provide a summary of the notation used, and then define some information
measures.
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2.1 Notation

Let X and Y be two finite sets. For any pair of random variables (X,Y ) on X × Y, with the joint
probability mass function (pmf) PXY , which we denote as (X,Y ) ∼ PXY , we let PX and PY be
the marginal pmfs of X and Y respectively. Further, let WY |X or simply W denote the conditional

pmf of Y given X, i.e., W(y | x) = PXY (x,y)
PX(x) , called the channel from X to Y . Given any input

distribution PX on X and a channelW from X to Y, we define the corresponding output distribution
PY = W◦PX as the marginal distribution induced by the channel, i.e., PY (y) =

∑
x∈X PX(x)W(y |

x). The expectation of any function f of a random variable X with distribution P is given by
EP [f(X)] ≜

∑
x∈X P (x) f(x); we simply say E[f(X)] when the distribution is clear. We denote

the support of a distribution P by supp(P ) = {x ∈ X : P (x) > 0}. For a, b ∈ [0, 1], we write ā to
denote 1− a and a ∗ b for ab̄+ āb. All logarithms are taken to the base 2.

2.2 Information measures

Given two distributions P and Q on X , we say that P is absolutely continuous w.r.t. Q, if Q(x) = 0
for some x ∈ X implies that P (x) = 0; this is denoted as P ≪ Q. Then, for any convex function
f : (0,∞) → R that is strictly convex at 1 and f(1) = 0, we define the f -divergence of P and Q
with P ≪ Q as

Df (P ||Q) ≜ EQ

[
f

(
P

Q

)]
=

∑
x∈supp(Q)

Q(x)f

(
P (x)

Q(x)

)
.

In particular, when f(x) = x log x, we have the KL divergence,

DKL(P ||Q) ≜ Dt7→t log t(P ||Q) = EQ

[
P

Q
log

P

Q

]
=

∑
x∈supp(Q)

P (x) log
P (x)

Q(x)
,

and when f(x) = 1
2 |x− 1|, we have the total variation (TV) distance,

DTV(P ||Q) ≜ Dt7→ 1
2
|t−1|(P ||Q) = EQ

[
1

2

∣∣∣∣PQ − 1

∣∣∣∣] =
1

2

∑
x∈X

|P (x)−Q(x)|.

The mutual information between random variables X and Y is related to the KL divergence as
I(X;Y ) = DKL(PXY ||PXPY ), and the entropy of a random variable is the self-information I(X;X).
All these quantities can also be extended to arbitrary random variables by suitably replacing pmfs
with the Radon-Nikodym derivative, as

Df (P ||Q) ≜ EQ

[
f

(
dP

dQ

)]
=

∫
X
f

(
dP

dQ

)
dQ(x).

The binary entropy function is the entropy of a Bernoulli(p) random variable (i.e., one that takes
the value 1 with probability p and 0 otherwise), given by

h2(p) ≜ −p log p− (1− p) log(1− p).

3 Data Processing Inequalities: From Classical to Strong to Non-
linear

We define the input-dependent and independent contraction coefficients [4], [5] as

ηI(W, PX) ≜ sup
PU|X :I(U ;X)>0,

U−X−Y

I(U ;Y )

I(U ;X)
,
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ηI(W) ≜ sup
PX

ηI(W, PX).

By the DPI, ηI(W, PX) is at most 1, but surprisingly, in many cases, it is strictly smaller than 1.
As an example, when W is defined from {0, 1} to {0, 1} as a binary symmetric channel (BSC) with
crossover probability α ∈ (0, 1), i.e., W(1−x | x) = α andW(x | x) = 1−α, ηI(BSC(α)) = (1−2α)2,
which is strictly smaller than 1, implying that I(U ;Y ) ≤ (1− 2α)2I(U ;X) for any distribution PX

on X and any U such that U −X − Y form a Markov Chain. Such inequalities are called strong
data processing inequalities (SDPIs).

In order to better understand this contraction phenomenon, it is useful to define and study the
data processing function [6], [7], given by

FW
I (t) ≜ sup

PUX

{I(U ;Y ) : I(U ;X) ≤ t, U −X − Y form a Markov Chain}. (1)

We could also consider an input-dependent data processing function, where the distribution PX is
also fixed, and we have FW

I (t, PX) as the supremum over all conditional distributions on U given
X, PU |X , but we use the input-independent version in the following. Plotting y = FW

I (x) on the
(x, y)-plane, we have that this curve lies under the y = ηI(W)x line in the first quadrant, and this
is all that the contraction coefficient can tell us about this function. Indeed, the SDPI provides
a linear upper bound, but in many cases, this is not useful enough to describe the contraction
properties of channels, as we shall see by means of examples.

Example 1. Consider two channels: W1 is a BSC(α) and W2 is defined from {0,1} to {0,1,?} as a
binary erasure channel (BEC) with erasure probability ϵ, i.e., W2(? | x) = ϵ and W2(x | x) = 1− ϵ.
For these channels, the data processing functions are known [6] to be the following:

F
BSC(α)
I (t) =

{
1− h2(α ∗ h−1

2 (1− t)) if t ≤ 1,

1− h2(α) else,

F
BEC(δ)
I (t) =

{
(1− δ)t if t ≤ 1,

1− δ else.

Additionally, the contraction coefficients are known to be ηI(BSC(α)) = (1−2α)2 and ηI(BEC(δ)) =
1− δ. For any α, it is possible to choose δ such that the two contraction coefficients are equal, but

F
BSC(α)
I is always strictly concave (by Mrs. Gerber’s lemma [8]), while F

BEC(δ)
I remains linear.

More generally, the DPI says that given any fixed channel W from X to Y, for any input
distributions PX and QX on X , the output distributions will be “closer” to each other, i.e.,
Df (PX ||QX) ≥ Df (PY ||QY ) for any f -divergence. Thus, we define more general contraction
coefficients and the associated data processing function as

ηf (W, QX) ≜ sup
PX :0<Df (PX ||QX)<∞

Df (W ◦ PX ||W ◦QX)

Df (PX ||QX)
,

ηf (W) ≜ sup
QX

ηf (W, QX).

FW
f (t) ≜ sup

PX ,QX

{Df (W ◦ PX ||W ◦QX) : Df (PX ||QX) ≤ t}.

Example 2. For the Gaussian channel with an input power-constraint a, i.e., Y = X + Z, Z ∼
N (0, σ2) for all X such that E[X2] ≤ a, the contraction coefficients for the KL divergence and
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the total variation distance, which we denote by ηKL(N (0, σ2), a) and ηTV(N (0, σ2), a) resp., are
both equal to 1, which seems to suggest that the Gaussian channel does not contract its input
distributions w.r.t. at least the KL and TV divergences. This is supported by the observation

that F
N (0,σ2),a
KL (t) = t (at least for all t < a

8 ) [6]. It is also known [9] that for any channel, the
contraction coefficient of any f -divergence is upper bounded by that of the total variation distance,
i.e., ηf (W) ≤ ηTV(W). Thus, one may be tempted to think that the total variation distance is more

“resistant” to contraction. However, it is also known [6] that F
N (0,σ2),a
TV (t) < t for t > 0.

It is worth clarifying that the results are not contradictory; the contraction coefficient only
looks at the linear part of the data processing function. The takeaway is that this restriction may
hide some of the finer details of the function, and these details may sometimes be significant. This
motivates the study of such data processing functions, or, as they are more commonly referred to,
nonlinear SDPIs.

4 Concavity of the Data Processing Function

We now pose our conjecture on the shape of the curve produced by these data processing functions.

4.1 Problem statement

Conjecture 1. For any channel W and f -divergence, the data processing function FW
f is concave.

Consider the set of points (Df (PY ||QY ), Df (PX ||QX)) over all distributions PX , QX on X ,
given a fixed W. This is the joint range of input and output divergences over the channel W,
formally given by

DW
f ≜

⋃
PX ,QX

(Df (PY ||QY ), Df (PX ||QX)). (2)

The curve FW
f is exactly the upper boundary of this set. Hence, if this set is convex, then Conjecture

1 is true. We may pose this as a stronger conjecture as follows.

Conjecture 2. For any channel W and f -divergence, DW
f is convex.

This is motivated by a similar result that is known for the joint range of f -divergences.

Theorem 1. (Joint range of f -divergences [10], [11]) For two functions f and g such that Df (· || ·)
and Dg(· || ·) are well-defined, consider the map (P,Q) 7→ (Df (P ||Q), Dg(P ||Q)) ⊂ R2, where P
and Q range over all probability distributions such that P ≪ Q. Then, the range of the map is a
convex set in R2.

The proof of this result relies heavily on the fact that the range is formed by all possible
distributions. In particular, let P0, Q0, P1, Q1 be any distributions (such that the associated f -
divergences are well-defined) on some set X . Then any point that is a convex combination of
the points (Df (P0 ||Q0), Dg(P0 ||Q0)) and (Df (P1 ||Q1), Dg(P1 ||Q1)), can be achieved by simply
considering the distributions Pi × δi, where δi is the Dirac measure at i, for i = 0, 1. These
distributions are now defined on X ×{0, 1}, a set of dimension twice that of the original, but these
are still valid probability distributions. Such a trick does not work for the joint range of input and
output divergences over a given channel, since the input and output sets are fixed.

Being unable to make any progress on this general conjecture, we decide to focus on the simpler
case when the channel is a BSC(α), and f(x) = x log x, i.e., the f -divergence is simply the KL
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divergence. For the input distribution PX given by (p, 1− p) on X = {0, 1} for some p ∈ [0, 1], the
output distribution is given by p ∗ α = pᾱ + p̄α1. Taking QX given by (q, 1 − q) to be the other
input distribution, the input and output KL divergences can be written as

DX(p, q) ≜ DKL(PX ||QX) = p log
p

q
+ p̄ log

p̄

q̄
,

DY (p, q) ≜ DKL(PY ||QY ) = (p ∗ α) log p ∗ α
q ∗ α

+ (p̄ ∗ α) log p̄ ∗ α
q̄ ∗ α

,

where the limiting values are defined as follows: p log p
0 = ∞ for p ̸= 0, 0 log 0

q = 0 for any q. For
this particular channel–divergence pair, Conjecture 3 becomes the following.

Conjecture 3. For the BSC(α), the data processing function F
BSC(α)
KL is concave, where

F
BSC(α)
KL (t) = sup

0≤p,q≤1
{DY (p, q) : DX(p, q) ≤ t}. (3)

Clearly, Conjecture 2 is the strongest of the three; it implies Conjecture 1, which, in turn,
implies Conjecture 3. We now restrict our attention to the BSC–KL-divergence scenario.

4.2 The data processing function for the BSC

To study the curve (3), it is useful to consider the joint range DBSC(α)
KL , i.e., image of the set [0, 1]×

[0, 1] under the mapping (p, q) 7→ (DX(p, q), DY (p, q)). The function F
BSC(α)
KL is then the upper

boundary of DBSC(α)
KL . Since (DX(p, q), DY (p, q)) = (DX(p̄, q̄), DY (p̄, q̄)), it suffices to consider the

image of
∆ = {(p, q) : 0 ≤ q ≤ p ≤ 1}.

By the open mapping theorem, interior points of ∆ will get mapped to interior points in the image
unless the derivative matrix is singular at those points. Hence the upper boundary of the image
must be due to either the boundary of ∆ or the points at which the derivative matrix is singular.
Let us first consider the former. The boundary of ∆ consists of three line segments:

1. 0 ≤ p = q ≤ 1: This gives DX(p, q) = DY (p, q) = 0, i.e., this entire line segment is mapped
to the point (0, 0).

2. 0 < p ≤ 1, q = 0: Then we have DX(p, q) = ∞, and

DY (p, q) = (p ∗ α) log p ∗ α
α

+ (p̄ ∗ α) log p̄ ∗ α
ᾱ

= h2(α)− h2(p ∗ α) + p (α− ᾱ) log
α

ᾱ
,

which is increasing in p. When p → 0, we have DY (p, q) → 0, and when p → 1, we have
DY (p, q) → (α− ᾱ) log α

ᾱ .

3. p = 1, 0 < q < 1: This gives DX(p, q) = log 1
q , and

DY (p, q) = ᾱ log
ᾱ

q ∗ α
+ α log

α

q̄ ∗ α
,

then taking q = 2−t, 0 < t < ∞, we have that this line segment is mapped to the curve
{(t, ᾱ log ᾱ

2−t∗α + α log α
2−t∗ᾱ) : 0 < t < ∞}.

1Recall that we use the notation x̄ = 1− x; we then have p ∗ α = p̄ ∗ α = p ∗ ᾱ.
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These line segments (in green, red and blue respectively) and their images are shown in Figure
1. If it were the case that the derivative matrix is never singular, i.e., the boundary of the range is
completely determined by the boundary of the domain, then the curve of interest to us is simply the
blue line, which is the function mapping t 7→ ᾱ log ᾱ

2−t∗α + α log α
2−t∗ᾱ . It can be seen analytically

(by differentiating) and also directly from the figure that this curve is not concave. However, it
turns out that the derivative matrix is indeed singular at some points, and hence the blue curve is
not the boundary of the image of ∆. This happens when∣∣∣∣∣∂DX

∂p
∂DY
∂p

∂DX
∂q

∂DY
∂q

∣∣∣∣∣ = 0 =⇒
log p

q − log p̄
q̄

p
q −

p̄
q̄

=
log p∗α

q∗α − log p̄∗α
q̄∗α

p∗α
q∗α − p̄∗α

q̄∗α
,

for (p, q) in the interior of ∆, i.e., 0 < q < p < 1. This expression has a nice interpretation: let
ℓ1 = p

q and ℓ2 = p̄
q̄ be the likelihood ratios. Then we have ℓ1 > 1 and ℓ2 < 1. Further, any pair

(ℓ1, ℓ2) ∈ (1,∞)× (0, 1) uniquely determines a pair (p, q), given by

q =
1− ℓ2
ℓ1 − ℓ2

, p = ℓ1
1− ℓ2
ℓ1 − ℓ2

,

so we have an isomorphic relation between the set of all (ℓ1, ℓ2) and the interior of ∆. Further,
let ℓ̃1 = p∗α

q∗α and ℓ̃2 = p̄∗α
q̄∗α be the likelihood ratios at the output. The condition for the derivative

matrix to be singular is then given by

log ℓ1 − log ℓ2
ℓ1 − ℓ2

=
log ℓ̃1 − log ℓ̃2

ℓ̃1 − ℓ̃2
,

i.e., the line joining the points (ℓ1, log ℓ1) and (ℓ2, log ℓ2) is parallel to the line joining (ℓ̃1, log ℓ̃1)
and (ℓ̃2, log ℓ̃2). It is possible to use this interpretation to obtain a numerical solution, which is
shown as the black curve in Figure 1, by taking α = 0.3 — this choice of α is not special, and
similar results can be obtained for all nontrivial values of α (i.e., α ̸= 0, 12 , 1). This curve is concave,

which verifies Conjecture 3 numerically. However, the transformation (ℓ1, ℓ2) 7→ (ℓ̃1, ℓ̃2) is difficult
to study analytically, and Conjecture 3 and, more generally, Conjectures 1 and 2 remain open.

1

1

0

p

q

0

DX

DY

Figure 1: The boundary of the region ∆ and its image under the mapping (p, q) 7→
(DX(p, q), DY (p, q)) are shown in green, red and blue — had these been the only critical points,
the image of the boundary would have also been the boundary of the image, but this is not the
case, as seen by the numerically obtained boundary shown in black. We take α = 0.3.
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5 Revisiting the Information Bottleneck Problem

The IB problem was introduced as an information-theoretic approach to learning [12]. In particular,
we consider a pair of correlated random variables (X,Y ) with some joint distribution, where Y is
some target variable that we wish to study, and X is an observation that depends on Y . The
goal is to find a representation U(X) (that may be randomized) which characterizes the trade-off
between U depending too much on X itself (complexity) and not having enough dependence on Y
(relevance). Formally, the IB problem for (X,Y ) is

sup
PU|X :

U−X−Y
I(U ;X)≤t

I(U ;Y ),

which is exactly the input-dependent form of FI(t) as in (1). This can be equivalently written in
terms of a Lagrange multiplier β, as

Lβ(PU |X) = I(U ;Y )− βI(U ;X).

For each β, maximizing Lβ gives an optimal conditional distribution P ∗,β
U |X ; plotting the pair

(I(U ;X), I(U ;Y )) for each such value of P ∗,β
U |X then gives the curve FI(t, PX), parametrized by

β.
The IB problem can be easily seen to be equivalent to various classical source coding setups [2]

in information theory, but its recent popularity comes from its success in explaining various obser-
vations in machine learning such as generalization and layering in deep architectures, particularly
with deep neural networks [3]. Insights gained from theoretical studies through IB have also led
to practical algorithms with improved performance. Making progress on obtaining better charac-
terizations of the data processing function would give us a better understanding of the trade-off
between relevance and complexity in learning algorithms, and more generally, aid in the design and
analysis of improved learning systems.

6 Conclusion

We have discussed the need for data processing functions instead of inequalities, and proposed
Conjecture 1, which seems natural enough. However, we have been able to show even the simplest
case, i.e., Conjecture 3, only numerically. Here are some related results that might be of use in the
future.

1. It is known that FW
I , the data processing function for the mutual information, is not concave

in general, by a counter-example involving binary-erasure channels used thrice [4]. This seems
to suggest that Conjecture 1 may also be false, but in the absence of a counter-example, we
still believe that it is true, mainly due to Theorem 1.

2. It can be shown [13] that any point in the upper concave envelope of the joint range (2)
is achievable by only considering PX and QX of binary support (for any finite input set
X and channel W). This adds support to the belief that the joint range is indeed convex,
since it seems that we can obtain points on the boundary even without going to higher input
dimensions (as in the proof of Theorem 1). It may be possible to fashion a similar proof in
this case as well, but we have been unable to.

3. To show that the upper boundary of the joint range is concave, one approach could be to
try to find suitable parametrizations that trace out concave paths between any pair of points
within the range — some attempts have been made for the case with binary X [14].
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