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Abstract

The multiple access channel is the most well-understood problem setup in network informa-
tion theory, with its capacity region exactly characterized when the average error probability
is used as the reliability criterion. Nevertheless, it is known that when the maximal rather
than average error probability is used, this leads, in general, to a smaller capacity region, about
which very little is known. And yet, allowing for randomization at the encoders surprisingly
leads to the same capacity region in both cases. For this result to be practically useful, it is
also necessary that the maximal error decays to zero at a comparable rate to the average error
(which is exponentially fast in the blocklength). We show that if the encoders have “too lit-
tle” randomness, the maximal error decay cannot be exponential, and discuss the difficulties in
proving a more general result.

1 Preliminaries

For completeness, below is a precise description of the problem that we look to solve, along with
the associated definitions and preliminaries.

1.1 Problem Setting

The (2-input) multiple access channel (MAC) has two inputs and one output. It is described by its
input space, transition probabilities, and output space, (X1×X2, pY |X1,X2

(y|x1, x2),Y). We assume
that the channel is memoryless, i.e., for (xn1 , x

n
2 , y

n) ∈ (X n
1 ,X n

2 ,Yn), we have Pr(yn|xn1 , xn2 ) =∏n
i=1 pY |X1,X2

(yi|x1i, x2i), which we represent simply as pY |X1,X2
(yn|xn1 , xn2 ).

Communicating over this channel are two independent senders at the input, having message sets
Mi = {1, . . . ,Mi}, i = 1, 2 resp., and a receiver at the output. An (n,R1, R2) deterministic code
over the channel consists of encoders fi : Mi → X n

i , i = 1, 2 and a decoder g : Yn → M1 ×M2

such that Mi = |Mi| =
⌈
2nRi

⌉
, i = 1, 2. In particular, note that f1, f2 and g are deterministic

functions.
We also define (n,R1, R2) random codes, which are simply random variables taking values in a

set of (n,R1, R2) deterministic codes {Cj}j∈J with some distribution Q. Clearly, such a code is
only practically realizable if the encoders and decoder share some common randomness, which is
rare, but they will be useful to us in proving the existence of “good” deterministic codes.

Requiring the same randomness at both the encoders and the decoder is too much to ask
practically, so by making the decoders deterministic, we have the realizable codes with stochastic
encoders, where the randomness is only required while encoding. We then have (independent)
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encoders ϕi : Mi → P(X n
i ), i = 1, 2 and a decoder g : Yn → M1 ×M2 (where P(X ) denotes the

set of probability distributions on X ). In this case, the encoders define a conditional distribution on
the input space given a message, which, by the functional representation lemma [1, Appendix B],
is equivalent to the encoder being a deterministic function of the message and an independent
random variable. We use this equivalent form, and denote the independent random variables by
J1 and J2 for encoders ϕ1 and ϕ2, taking values in J1 and J2 resp. (since the encoders themselves
are independent, so must J1 and J2). Thus an (n,R1, R2) code with stochastic encoders consists
of encoders fi : Mi × Ji → X n

i , i = 1, 2 that have access to random variables J1 and J2 with the
product distribution Q, and a decoder g : Yn → M1 ×M2. Once again, note that f1, f2 and g are
deterministic functions. For brevity, we will refer to these codes as simply stochastic codes, which
are not to be confused with random codes.

Note that random codes are the most general class of codes and contain all stochastic codes,
which in turn contain all deterministic codes.

1.2 Error Probabilities and Capacity Regions

We can now define the error probabilities associated with each type of code and the capacity regions
that they describe. Let Cd be a deterministic code, and define pe(Cd, (m1,m2)) to be the error
probability of the code Cd for the message pair (m1,m2) ∈ M1 ×M2, i.e.,

pCd
e (m1,m2) =

∑
y∈Yn:g(y)̸=(m1,m2)

pY |X1,X2
(y | x1 = f1(m1), x2 = f2(m2)).

Then the average error probability and maximal error probability are defined as

pCd
a =

1

M1M2

∑
(m1,m2)∈M1×M2

pCd
e (m1,m2), and

pCd
m = max

(m1,m2)∈M1×M2

pCd
e (m1,m2).

Similarly, for a stochastic code Cs, we have

pCs
e (m1,m2, j1, j2) =

∑
y∈Yn:g(y)̸=(m1,m2)

pY |X1,X2
(y | x1 = f1(m1, j1), x2 = f2(m2, j2)),

pCs
e (m1,m2) = EQ pCs

e (m1,m2, J1, J2),

pCs
a =

1

M1M2

∑
(m1,m2)∈M1×M2

pCs
e (m1,m2), and

pCs
m = max

(m1,m2)∈M1×M2

pCs
e (m1,m2),

and for a random code Cr taking values in {Cj}j∈J with distribution Q, where Cj , j ∈ J are
deterministic codes,

pCr
e (m1,m2, j) = p

Cj
e (m1,m2),

pCr
e (m1,m2) = EQ pCr

e (m1,m2, J),

pCr
a =

1

M1M2

∑
(m1,m2)∈M1×M2

pCr
e (m1,m2), and

pCr
m = max

(m1,m2)∈M1×M2

pCr
e (m1,m2).
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A rate pair (R1, R2) is achievable with respect to the average (resp. maximal) error criterion
if there is a sequence of (n,R1, R2) codes Cn such that limn→∞ pCn

m = 0 (resp. limn→∞ pCn
a = 0).

The capacity region C is the closure of the set of achievable rate pairs. Depending on the choice of
deterministic/stochastic/random codes and average/maximal error probability, we have six different
capacity regions that may a priori all be unequal. As before, using the subscripts d, s and r to
denote the use of deterministic, stochastic and random codes, and a and m to denote the average
and maximal error criteria respectively, we have the capacity regions Cd,m, Cd,a, Cs,m, Cs,a, Cr,m, and
Cr,a.

Some relations between these regions are immediate: all deterministic codes are a special type
of stochastic codes, which are in turn random codes, hence Cd,· ⊆ Cs,· ⊆ Cr,·, where · may be a or m.
Further, the maximal error criterion enforces a stronger constraint than the average error criterion,
and hence, C·,m ⊆ C·,a, where · may be d, s or r. It is also easy to see that Cd,a = Cs,a = Cr,a, since
it is always possible to construct a deterministic code with the same rate and at most the same
average error probability as a given random code, because

pCr
a = EQ

1

M1M2

∑
(m1,m2)

pCr
e (m1,m2, J) ≥

1

M1M2

∑
(m1,m2)

p
Cj
e (m1,m2) = p

Cj
a

for some deterministic code Cj . This gives Cr,a ⊆ Cd,a and together with Cd,a ⊆ Cs,a ⊆ Cr,a, we
are done. (Under the maximal error criterion, the claim that there exists some such j would be
invalid, since the expectation occurs before the maximization over messages, and these cannot be
interchanged.)

2 Multiple Access Channels: Maximal vs. Average Error

In 1978, Dueck [2] showed by means of an example that the maximal error capacity region can be
strictly smaller than the average error capacity region when using only deterministic encoders, i.e.,
Cd,m ⊂ Cd,a. Using Ahlswede’s “random code reduction” technique [3], [4], [5, Chapter 12], N. Cai
[6] showed that a stochastic code under the maximal error criterion can achieve any rate in the
average error capacity region (deterministic or random, as they are the same) of the MAC, i.e.,
Cs,m = Cr,m = Cd,a = Cr,a. Thus, a practical shortcoming of using the average error probability as
the performance criterion, namely that it does not guarantee error-free recovery of every codeword,
seems to be a non-issue, as it is possible to achieve all rates in the average error capacity region
with arbitrarily low maximal error probabilities. But this is not the case, as we are only guaranteed
that the errors eventually decay to zero with sufficiently large blocklengths. To be able to sincerely
claim that using stochastic codes, we can achieve the same practical performance for every codeword
and not simply on average, we must also consider the rate of decay to zero, and require that the
maximum error over all codewords becomes sufficiently small at a comparable blocklength to when
the average error does.

It is known [7] that if (R1, R2) ∈ Cd,a, then not only does there exist (as by definition) a sequence
of (n,R1, R2) codes Cn such that pCn

a → 0, but this decay is, in fact, exponential in n, i.e., there
exist deterministic codes of rate pairs in the average error capacity region, such that the average
error probability decays exponentially, or for large enough n,

pCn
a < exp(−nE + o(n))

for some E > 0, which is called the error exponent, and o(n)
n → 0 as n → ∞. It is also likely (but

remains to be checked) that the same holds for maximal error probabilities pCn
m at rate pairs in the
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deterministic maximal error capacity region Cd,m. Allowing for randomization at the encoder, the
capacity region under the maximal error criterion increases from Cd,m to Cd,a. A natural question
to ask, then, is whether we can still have exponentially decaying pCn

m at rate pairs in between the
two, i.e., in Cd,a \ Cd,m (of course, if nonempty).

Conjecture 1. Even though it is possible, by employing randomization at the encoder, to obtain
codes with rate pairs outside the maximal error capacity region (in Cd,a \ Cd,m) achieving maximal
error probabilities that can be made arbitrarily small, these maximal error probabilities cannot decay
exponentially in n.

This follows quite easily if the “amount of randomness” used is not “too large”.

Theorem 1. If the randomization employed at the encoders takes values in a set of cardinality
subexponential in n, the maximal error probability cannot decay exponentially in n outside the
maximal error capacity region.

Proof. Let (R1, R2) be a rate pair in Cd,a \ Cd,m (which we assume to be nonempty). Then there is
a sequence of (n,R1, R2) random codes Cn indexed by random variables Jn ∈ Jn with distribution
pJ , such that pCn

m → 0. Now suppose this decay is exponential, i.e., there exists a constant E > 0
such that pCn

m < exp(−nE + o(n)), or equivalently, for every (m1,m2) in the message set,

EpJ p
Cn
e (m1,m2, Jn) < exp(−nE + o(n)).

Suppose further that the sets Jn grow subexponentially in n, i.e., for each S > 0, there exists
an n0(S) such that for all n > n0(S), we have |Jn| < exp(nS). Then there must be some instance
j∗n ∈ Jn such that

pJ(j
∗
n) ≥

1

|Jn|
> exp(−nS) for every S > 0, n > n0(S).

Thus we have for every message pair (m1,m2), with any S > 0 and n > n0(S),

exp(−nE + o(n)) > EpJ p
Cn
e (m1,m2, Jn)

≥ pJ(j
∗
n) p

Cn
e (m1,m2, j

∗
n)

> exp(−nS) pCn
e (m1,m2, j

∗
n)

=⇒ p
Cj∗n
e = pCn

e (m1,m2, j
∗
n) < exp(o(n)− nE + nS).

Choosing S < E and letting E′ = E − S > 0, we have that for every (m1,m2),

p
Cj∗n
e < exp(−nE′ + o(n))

for n > n0(S), which shows the existence of a sequence of (n,R1, R2) deterministic codes Cj∗n
with maximal error probability decaying exponentially to zero. This means that (R1, R2) ∈ Cd,m,
contradicting our initial assumptions, and we are done.

This settles Conjecture 1 if only a subexponential amount of randomness is allowed at the
encoders. What happens with an exponential amount of randomness? Given that Theorem 1
is true, Conjecture 1 holds if the following conjecture does. This is motivated by Ahlswede’s
“random code reduction” result [3] – using the Chernoff bound, it is possible to show that from
any arbitrary random code achieving exponentially small error probability, it is possible to obtain
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a subcode with a subexponential amount of randomness, with the same rate and achieving small
(note: not exponentially decaying, that would settle our problem!) error probability, and then it
easily follows that there must exist some deterministic code with the same rate and small error
since the random variable used in this randomization can also be transmitted with the message
at no extra rate (there are only subexponentially many possible values, so 1

n log |Jn| → 0). If an
exponential amount of randomness is used without reduction, then there must be a reduction in
rate incurred by transmitting the randomization parameter.

Conjecture 2. Using an exponential amount of randomness does not provide any improvement
over using a subexponential amount, i.e., any rate pair and maximal error probability that can be
achieved using codes with exponentially large randomness at the encoders can also be achieved by a
subexponential subcode.

We have not been able to either prove or disprove Conjecture 2, but consider the following
example.

Example 1. Consider the M ×M matrix A, with elements A(w1, w2) = 1{(w2 − w1) mod M ≤√
M}, for w1, w2 ∈ {0, . . . ,M − 1}. Now suppose that the error probabilities with some random

code C for the message pair (m1,m2), when the random variable J = j ∈ J = {0, . . . ,M − 1} is
given by

pCe (m1,m2, j) = A(w1, (w2 + j) mod M).

If J is uniform on J , we have that for all (m1,m2), E pCe (m1,m2, J) =
1√
M
, which decays exponen-

tially with n. However, max(m1,m2) p
C
e (m1,m2, j) = 1 for every j. Hence we have an exponentially

small maximal error probability using an exponential amount of randomness, from which it is im-
possible to obtain a deterministic code with small (not even necessarily exponentially decaying)
maximal error probability. From the contrapositive to Theorem 1, we have that it must also have
been impossible to have a random code with a subexponential amount of randomness, which seems
to have disproved Conjecture 2, except that

1. this specific example can be expurgated thanks to the presence of an N×N all-zero submatrix
in the top right corner, with N = 1

2(M −
√
M), but it does seem likely that there exists a

similar example where expurgation is not possible; and

2. this choice of pe may not be legitimate, i.e., it may not be possible for a code to have such an
arrangement of error probabilities, but it is unclear how to characterize such legitimate error
probability matrices.

3 Closing Comments

While Theorem 1 is almost trivial, the rest of the problem does not seem to go through quite so
easily. Attempting to simply modify the expressions in Cai’s proof [6] to incorporate an exponen-
tially decaying error probability does not work. On the other hand, characterizing the maximal
error probability itself is a difficult problem, and it is unclear how to make progress without making
use of these “good” random codes or expurgation.

A more fundamental approach was first described by Ahlswede in 1973 [8] to show that for
multi-user channels, it may not always be possible to extract a “good” subcode w.r.t. the maximal
error criterion as is the case with the point-to-point channels, even preceding Dueck’s concrete
example [2] showing that the capacity regions are strictly unequal. This was further developed into
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the “wringing technique” to prove strong converses for the MAC by Ahlswede in 1981 [9] and more
recently by Kosut [10]. There may be some scope for development along these lines.

Finally, an important question that remains unanswered (even for the point-to-point channel)
is how to optimally decode for the maximal error probability – the maximum a posteriori (MAP)
decoder minimizes the average error probability – indeed, the optimal decoder for the maximal case
is, in general, not even deterministic. It does seem likely that MAP decoding may still be nearly
optimal (such as being only a constant factor off and hence optimal w.r.t. the error exponent),
as elementary calculations for binary-input binary-output channels show, but generalizing such
a result has been difficult because of the inherent difficulty in characterizing the maximal error
probability.

References

[1] A. E. Gamal and Y.-H. Kim, Network Information Theory. USA: Cambridge University Press,
2012, isbn: 1107008735.

[2] G. Dueck, “Maximal error capacity regions are smaller than average error capacity regions
for multi-user channels.,” Prob. Control Inform. Theory, 1978; Vol. 7, 1978.

[3] R. Ahlswede, “Elimination of correlation in random codes for arbitrarily varying channels,”
Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete, vol. 44, no. 2, 1978.

[4] A. Lapidoth and P. Narayan, “Reliable communication under channel uncertainty,” IEEE
Transactions on Information Theory, vol. 44, no. 6, pp. 2148–2177, 1998. doi: 10.1109/18.
720535.

[5] I. Csiszár and J. Körner, Information Theory: Coding Theorems for Discrete Memoryless
Systems, 2nd ed. Cambridge University Press, 2011. doi: 10.1017/CBO9780511921889.

[6] N. Cai, “The maximum error probability criterion, random encoder, and feedback, in multiple
input channels,” Entropy, vol. 16, no. 3, pp. 1211–1242, 2014.

[7] R. Gallager, “A perspective on multiaccess channels,” IEEE Transactions on information
Theory, vol. 31, no. 2, pp. 124–142, 1985.

[8] R. Ahlswede, “On two-way communication channels and a problem by zarankiewics,” Probl.
of Control and Inform. Theory, 1973.

[9] R. Ahlswede, “An elementary proof of the strong converse theorem for the multiple-access
channel,” J. Comb. Inform. Syst. Sci, vol. 7, no. 3, pp. 216–230, 1982.

[10] O. Kosut, “A second-order converse bound for the multiple-access channel via wringing de-
pendence,” IEEE Transactions on Information Theory, vol. 68, no. 6, pp. 3552–3584, 2022.
doi: 10.1109/TIT.2022.3151711.

6

https://doi.org/10.1109/18.720535
https://doi.org/10.1109/18.720535
https://doi.org/10.1017/CBO9780511921889
https://doi.org/10.1109/TIT.2022.3151711

	Preliminaries
	Problem Setting
	Error Probabilities and Capacity Regions

	Multiple Access Channels: Maximal vs. Average Error
	Closing Comments

