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Applications of Learning to Communication

Beam alignment (Vutha Va, Takayuki Shimizu, Gaurav Bansal, et al. “Online

Learning for Position-Aided Millimeter Wave Beam Training”. In: IEEE Access (2019),

Matthew B. Booth, Vinayak Suresh, Nicolò Michelusi, et al. “Multi-Armed Bandit Beam

Alignment and Tracking for Mobile Millimeter Wave Communications”. In: IEEE

Communications Letters 7 (2019))

Rate selection (Harsh Gupta, Atilla Eryilmaz, and R. Srikant. “Link Rate Selection

using Constrained Thompson Sampling”. In: IEEE INFOCOM 2019 - IEEE Conference on

Computer Communications. 2019)

Bit-constrained communication (Osama A. Hanna, Lin F. Yang, and

Christina Fragouli. Solving Multi-Arm Bandit Using a Few Bits of Communication. 2021,

Aritra Mitra, Hamed Hassani, and George J Pappas. “Linear Stochastic Bandits over a

Bit-Constrained Channel”. In: arXiv preprint arXiv:2203.01198 (2022))
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Problem Setup

Source: Osama A. Hanna, Lin F. Yang, and Christina Fragouli. Solving Multi-Arm

Bandit Using a Few Bits of Communication. 2021

4 / 24



Pre-Project Recap Theorems and Proofs Simulations Conclusion

Problem Statement

MAB problem, horizon n

Leaner chooses At ∈ At and receives rt with mean µAt

Goal: maximize expected regret, Rn = E[
∑n

t=1(µ
∗
t − rt)], where

µ∗
t = maxA∈At µA

Agent

Plays At and
observes rt

Learner

Calculates At+1

from Ht

action At

channel

reward rt
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Recall

Let n be the number of rounds.

ETC and ϵ-greedy achieves O(
√
n) with knowledge of ∆

Thompson sampling and UCB achieves O(
√
n log n) without knowing

∆

LinUCB achieves O(d
√
n log n)

These assumed full-precision rewards.

Goal: Develop quantization scheme to apply over any MAB algorithm
such that the quantized regret is only a constant factor off, while
maintaining a low number of bits
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Quantization

L: countable set

Quantizer consists of:

E : R → L
D : L → R
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Stochastic Quantization

Let L = {ℓi}2
B

i=1, x ∈ [ℓ1, ℓ2B ].

i(x) = max
{
j | ℓj ≤ x and j < 2B

}
EL(x) =

 i(x) with probability
ℓi(x)+1−x

ℓi(x)+1−ℓi(x)

i(x) + 1 with probability
x−ℓi(x)

ℓi(x)+1−ℓi(x)

DL(j) = ℓj , j ∈
{
1, . . . , 2B

}
Conditioned on At , unbiased estimate of µAt is communicated.

8 / 24



Pre-Project Recap Theorems and Proofs Simulations Conclusion

QuBan

Maintains Markov property, unbiasedness, bounded variance for
quantized rewards

Uses a few bits for communication
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QuBan: Main Ideas

Center quantization scheme around value believed to be closest to
picked arm’s mean in majority of iterations

Quantization error conditionally independent on past history given At

Assign shorter codes to values near quantization centre and o.w.
longer codes

Use SQ to convey unbiased estimate of reward
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QuBan: Algorithm (Learner)

Source: Osama A. Hanna, Lin F. Yang, and Christina Fragouli. Solving Multi-Arm Bandit Using
a Few Bits of Communication. 2021 11 / 24
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QuBan: Algorithm (Agent)

Source: Osama A. Hanna, Lin F. Yang, and Christina Fragouli. Solving Multi-Arm Bandit Using
a Few Bits of Communication. 2021
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Assumptions on MAB Instance and Algorithm

Assumption 1

All codes are prefix-free codes. Further,

1 rewards possess Markov property; and

2 the expected regret is upper-bounded by RU
n .
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Regret Bound

Proposition 1

Suppose Assumption 1 holds. Then, when we apply QuBan, the
following hold:

1 Conditioned on At , the quantized reward r̂t is((
1 + ϵ

2

)
σ
)2
-subgaussian, conditionally independent on the history

A1, r̂1, . . . ,At−1, r̂t−1 (Markov property), and satisfies E [r̂t | At ] =
µAt , |r̂t − rt | ≤ Mt almost surely (t = 1, . . . , n).

2 The expected regret Rn is bounded as Rn ≤
(
1 + ϵ

2

)
RU
n , where ϵ is a

parameter to control the regret vs number of bits trade-off.
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Number of Bits

Theorem 1

Suppose Assumption 1 holds. Let ϵ = 1. There is a universal constant C
such that, for QuBan with:

1 µ̂(t) = µ̂At (t − 1) (avg-arm-pt), the average number of bits
communicated satisfies that
E[B̄(n)] ≤ 3.4 + C

n

∑k
i=1 log (1 + |µi | /σ) + C/

√
n.

2 µ̂(t) = 1
t−1

∑t−1
j=1 r̂j (avg-pt), the average number of bits

communicated satisfies
E[B̄(n)] ≤ 3.4 + C

n

(
1 + log

(
1 + |µ∗|

σ

)
+ Rn

σ +
∑n−1

t=1
Rt
(σt)

)
+ C/

√
n.
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Lower Bound

Theorem 2

For any memoryless algorithm that only uses quantized rewards, prefix-free
encoding and satisfies that for any MAB instance with subgaussian
rewards:

1 Rn is sublinear in n,

2 Conditioned on rt , r̂t − rt is
(
σ
2

)2
-subgaussian (t = 1, . . . , n),

there exist σ2-subgaussian reward distributions for which:

1 (∀b ∈ N)(∃t, δ > 0) such that P [Bt > b] > δ.

2 (∀t > 0)(∃n > t) such that E[B̄(n)] ≥ 2.2 bits.

16 / 24



Pre-Project Recap Theorems and Proofs Simulations Conclusion

Upper Bound

Bt ≤ 3 + 1

[
rt
Mt

−
⌊
µ̂(t)

Mt

⌋
> 3

]
+ 1

[⌊
µ̂(t)

Mt

⌋
− rt

Mt
> 2

]
+2

(
1

[
rt
Mt

−
⌊
µ̂(t)

Mt

⌋
> 4

]
| log

(
rt
Mt

−
⌊
µ̂(t)

Mt

⌋
− 3

)⌉)
+ 2

(
1

[⌊
µ̂(t)

Mt

⌋
− rt

Mt
> 3

] ⌈
log

(⌊
µ̂(t)

Mt

⌋
− rt

Mt
− 2

)⌉)
Bt ≤ 3 + 1

[∣∣∣∣ rtMt
− µ̂(t)

Mt

∣∣∣∣ > 2

]
+ 2

(
1

[∣∣∣∣ rtMt
− µ̂(t)

Mt

∣∣∣∣ > 3

])
+ 2

(
1

[∣∣∣∣ rtMt
− µ̂(t)

Mt

∣∣∣∣ > 3

]
log

(∣∣∣∣ rtMt
− µ̂(t)

Mt

∣∣∣∣− 2

))
Bt ≤ 3 + 1

[∣∣∣∣ rt − µAt

σ

∣∣∣∣ > 2(1− δ)

]
+ 1

[∣∣∣∣µAt − µ̂(t)

σ

∣∣∣∣ > 2δ

]
+ 2

(
1

[∣∣∣∣ rt − µAt

σ

∣∣∣∣ > 3(1− δ)

]
+ 1

[∣∣∣∣µAt − µ̂(t)

σ

∣∣∣∣ > 3δ

])
+ 2

(
1

[∣∣∣∣ rt − µAt

σ

∣∣∣∣ > 3

])
log

(∣∣∣∣ rt − µ̂(t)

σ

∣∣∣∣− 2

)
for each δ > 0
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Upper Bound

E [Bt ] ≤ 3 + P
[∣∣∣∣ rt − µAt

σ

∣∣∣∣ > 2(1− δ)

]
+ P

[∣∣∣∣µAt − µ̂(t)

σ

∣∣∣∣ > 2δ

]
+ 2

(
P
[∣∣∣∣ rt − µAt

σ

∣∣∣∣ > 3(1− δ)

]
+ P

[∣∣∣∣µAt − µ̂(t)

σ

∣∣∣∣ > 3δ

])
+ 2E

[(
1

[∣∣∣∣ rt − µAt

σ

∣∣∣∣ > 3

])
log

(∣∣∣∣ rt − µ̂(t)

σ

∣∣∣∣− 2

)]
≤ 3.4 + CE

[∣∣∣∣µAt − µ̂(t)

σ

∣∣∣∣] ≤ · · ·
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QuBan
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Modified setup

Agent full precision, learner bit-constrained? Trivial.

Both bit-constrained?
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Modified QuBan

Learner too is communication-constrained

Learner sends µ̂(t) using 10-bit SQ
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Modified QuBan
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Conclusion

Presented the upper bound proof, and

Numerical analysis for the setup where both the learner and agents
are bit-constrained.
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Thank you
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