IE 617: Online Learning and Bandit Algorithms Course Project Communication-Constrained Multi-Armed Bandits

Adway Girish, Fathima Zarin Faizal (180070002, 180070018)

Department of Electrical Engineering IIT Bombay

May 7, 2022

Outline

(1) Pre-Project Recap

(2) Theorems and Proofs
(3) Simulations
4. Conclusion

Applications of Learning to Communication

- Beam alignment (Vutha Va, Takayuki Shimizu, Gaurav Bansal, et al. "Online Learning for Position-Aided Millimeter Wave Beam Training". In: IEEE Access (2019), Matthew B. Booth, Vinayak Suresh, Nicolò Michelusi, et al. "Multi-Armed Bandit Beam Alignment and Tracking for Mobile Millimeter Wave Communications". In: IEEE Communications Letters 7 (2019))
- Rate selection (Harsh Gupta, Atilla Eryilmaz, and R. Srikant. "Link Rate Selection using Constrained Thompson Sampling". In: IEEE INFOCOM 2019-IEEE Conference on Computer Communications. 2019)
- Bit-constrained communication (Osama A. Hanna, Lin F. Yang, and Christina Fragouli. Solving Multi-Arm Bandit Using a Few Bits of Communication. 2021, Aritra Mitra, Hamed Hassani, and George J Pappas. "Linear Stochastic Bandits over a Bit-Constrained Channel". In: arXiv preprint arXiv:2203.01198 (2022))

Problem Setup

Source: Osama A. Hanna, Lin F. Yang, and Christina Fragouli. Solving Multi-Arm Bandit Using a Few Bits of Communication. 2021

Problem Statement

- MAB problem, horizon n
- Leaner chooses $A_{t} \in \mathcal{A}_{t}$ and receives r_{t} with mean $\mu_{A_{t}}$
- Goal: maximize expected regret, $R_{n}=\mathbb{E}\left[\sum_{t=1}^{n}\left(\mu_{t}^{*}-r_{t}\right)\right]$, where $\mu_{t}^{*}=\max _{A \in \mathcal{A}_{t}} \mu_{A}$
action A_{t}
Agent

Plays A_{t} and
observes r_{t}

CHANNEL

Recall

Let n be the number of rounds.

- ETC and ϵ-greedy achieves $\mathcal{O}(\sqrt{n})$ with knowledge of Δ
- Thompson sampling and UCB achieves $\mathcal{O}(\sqrt{n \log n})$ without knowing Δ
- LinUCB achieves $\mathcal{O}(d \sqrt{n} \log n)$

These assumed full-precision rewards.
Goal: Develop quantization scheme to apply over any MAB algorithm such that the quantized regret is only a constant factor off, while maintaining a low number of bits

Quantization

\mathcal{L} : countable set

Quantizer consists of:

- $\mathcal{E}: \mathbb{R} \rightarrow \mathcal{L}$
- $\mathcal{D}: \mathcal{L} \rightarrow \mathbb{R}$

Stochastic Quantization

Let $\mathcal{L}=\left\{\ell_{i}\right\}_{i=1}^{2^{B}}, x \in\left[\ell_{1}, \ell_{2 B}\right]$.

- $i(x)=\max \left\{j \mid \ell_{j} \leq x\right.$ and $\left.j<2^{B}\right\}$
- $\mathcal{E}_{\mathcal{L}}(x)=\left\{\begin{array}{l}i(x) \quad \text { with probability } \frac{\ell_{i(x)+1}-x}{\ell_{i(x)+1}-\ell_{i(x)}} \\ i(x)+1 \quad \text { with probability } \frac{x-\ell_{i(x)}}{\ell_{i(x)+1}-\ell_{i(x)}}\end{array}\right.$
- $D_{\mathcal{L}}(j)=\ell_{j}, j \in\left\{1, \ldots, 2^{B}\right\}$

Conditioned on A_{t}, unbiased estimate of $\mu_{A_{t}}$ is communicated.

QuBan

- Maintains Markov property, unbiasedness, bounded variance for quantized rewards
- Uses a few bits for communication

QuBan: Main Ideas

- Center quantization scheme around value believed to be closest to picked arm's mean in majority of iterations
- Quantization error conditionally independent on past history given A_{t}
- Assign shorter codes to values near quantization centre and o.w. longer codes
- Use SQ to convey unbiased estimate of reward

QuBan: Algorithm (Learner)

```
Algorithm 1 Learner operation with input MAB algorithm \(\Lambda\)
    : Initialize: \(\hat{\mu}(1)=0\)
    for \(t=1, \ldots, n\) do
        Choose an action \(A_{t}\) based on the bandit
        algorithm \(\Lambda\) and ask the next agent to play it
        Send \(M \sqrt{\ddagger}, \hat{\mu}(t)\) to an agent
        Receive the encoded reward \(\left(b_{t}, I_{t}, \mathcal{E}_{\mathcal{L}_{t}}\left(e_{t}\right)\right)\) (see
        Algorithm (4)
        Decode \(\hat{r}_{t}\) :
        if length \(\left(b_{t}\right) \leq 4\) then
        \(\hat{r}_{t}\) can be decoded using a lookup table
        else
            Decode the sign, \(s_{t}\), of \(r_{t}\) from \(b_{t}\)
            Set \(\ell_{t}\) to be the \(I_{t}\)-th element in the set
            \(\left\{0,2^{0}, \ldots\right\}\)
            Set \(\mathcal{L}_{t}=\left\{\ell_{t}, \ell_{t}+1, \ldots, \max \left\{2 \ell_{t}, \ell_{t}+1\right\}\right\}\)
            Let \(e_{t}^{(q)}=D_{\mathcal{L}_{t}}\left(\mathcal{E}_{\mathcal{L}_{t}}\left(e_{t}\right)\right)\)
            \(\hat{r}_{t}=\left(s_{t}\left(e_{t}^{(q)}+\ell_{t}+3.5\right)+0.5+\left\lfloor\hat{\mu}(t) / M_{t}\right\rfloor\right) M_{t}\)
            Calculate \(\hat{\mu}(t+1)\) (using one of the discussed
            choices)
            Update the parameters required by \(\Lambda\)
```


QuBan: Algorithm (Agent)

```
Algorithm 2 Distributed Agent Operation
    Inputs: \(r_{t}, \hat{\mu}(t)\) and \(M_{t}\)
    2: Set \(L=\left\{\left\lfloor\bar{r}_{t}\right\rfloor,\lceil\bar{r}\rceil\right\}, \hat{\bar{r}}_{t}=D_{L}\left(\mathcal{E}_{L}\left(\bar{r}_{t}\right)\right)\)
    3: Set \(b_{t}\) with three bits to distinguish between the 8 cases: \(\hat{\bar{r}}_{t}<-2, \hat{\bar{r}}_{t}>3, \hat{\bar{r}}_{t}=i, i \in\)
    \(\{-1,0,1,2\}\).
    : if \(\left|\hat{r}_{t}\right|>|a|\) and \(\hat{\bar{r}}_{t} a>0, a \in\{-2,3\}\) then
        Augment \(b_{t}\) with an extra one bit to indicate if \(\left|\hat{\bar{r}}_{t}\right|=|a|+1\) or \(\left|\hat{\hat{r}}_{t}\right|>|a|+1\).
        if \(\left|\hat{\hat{r}}_{t}\right|>|a|+1\) then
            Let \(L^{\prime}=\left\{0,2^{0}, \ldots\right\}\)
            Set \(\ell_{t}=\max \left\{j \in L\left|j \leq\left|\bar{r}_{t}\right|-|a|\right\}\right.\)
            Encode \(\ell_{t}\) by \(I_{t}-1\) zeros followed by a one
            (unary coding), where \(I_{t}\) is the index of \(\ell_{t}\)
            in the set \(L^{\prime}\).
            Let \(e_{t}=\left|\bar{r}_{t}\right|-|a|-\ell_{t}\)
            Set \(\mathcal{L}_{t}=\left\{\ell_{t}, \ell_{t}+1, \ldots, \max \left\{2 \ell_{t}, \ell_{t}+1\right\}\right\}\)
            Encode \(e_{t}\) using SQ to get \(\mathcal{E}_{\mathcal{L}_{t}}\left(e_{t}\right)\)
    Transmit \(\left(b_{t}, I_{t}, \mathcal{E}_{\mathcal{L}_{t}}\left(e_{t}\right)\right)\)
```


Assumptions on MAB Instance and Algorithm

Assumption 1

All codes are prefix-free codes. Further,
(1) rewards possess Markov property; and
(2) the expected regret is upper-bounded by R_{n}^{U}.

Regret Bound

Proposition 1

Suppose Assumption 1 holds. Then, when we apply QuBan, the following hold:
(1) Conditioned on A_{t}, the quantized reward \hat{r}_{t} is $\left(\left(1+\frac{\epsilon}{2}\right) \sigma\right)^{2}$-subgaussian, conditionally independent on the history $A_{1}, \hat{r}_{1}, \ldots, A_{t-1}, \hat{r}_{t-1}$ (Markov property), and satisfies $\mathbb{E}\left[\hat{r}_{t} \mid A_{t}\right]=$ $\mu_{A_{t}},\left|\hat{r}_{t}-r_{t}\right| \leq M_{t}$ almost surely $(t=1, \ldots, n)$.
(2) The expected regret R_{n} is bounded as $R_{n} \leq\left(1+\frac{\epsilon}{2}\right) R_{n}^{U}$, where ϵ is a parameter to control the regret vs number of bits trade-off.

Number of Bits

Theorem 1
Suppose Assumption 1 holds. Let $\epsilon=1$. There is a universal constant C such that, for QuBan with:
(1) $\hat{\mu}(t)=\hat{\mu}_{A_{t}}(t-1)$ (avg-arm-pt), the average number of bits communicated satisfies that
$\mathbb{E}[\bar{B}(n)] \leq 3.4+\frac{C}{n} \sum_{i=1}^{k} \log \left(1+\left|\mu_{i}\right| / \sigma\right)+C / \sqrt{n}$.
(2) $\hat{\mu}(t)=\frac{1}{t-1} \sum_{j=1}^{t-1} \hat{r}_{j}$ (avg-pt), the average number of bits communicated satisfies

$$
\mathbb{E}[\bar{B}(n)] \leq 3.4+\frac{C}{n}\left(1+\log \left(1+\frac{\left|\mu^{*}\right|}{\sigma}\right)+\frac{R_{n}}{\sigma}+\sum_{t=1}^{n-1} \frac{R_{t}}{(\sigma t)}\right)+C / \sqrt{n} .
$$

Lower Bound

Theorem 2

For any memoryless algorithm that only uses quantized rewards, prefix-free encoding and satisfies that for any MAB instance with subgaussian rewards:
(1) R_{n} is sublinear in n,
(2) Conditioned on $r_{t}, \hat{r}_{t}-r_{t}$ is $\left(\frac{\sigma}{2}\right)^{2}$-subgaussian $(t=1, \ldots, n)$, there exist σ^{2}-subgaussian reward distributions for which:
(1) $(\forall b \in \mathbb{N})(\exists t, \delta>0)$ such that $\mathbb{P}\left[B_{t}>b\right]>\delta$.
(2) $(\forall t>0)(\exists n>t)$ such that $\mathbb{E}[\bar{B}(n)] \geq 2.2$ bits.

Upper Bound

$$
\begin{aligned}
B_{t} \leq & \left.3+\mathbf{1}\left[\frac{r_{t}}{M_{t}}-\left|\frac{\hat{\mu}(t)}{M_{t}}\right|>3\right]+\mathbf{1}\left[\left\lvert\, \frac{\hat{\mu}(t)}{M_{t}}\right.\right\rfloor-\frac{r_{t}}{M_{t}}>2\right] \\
& +2\left(\mathbf{1}\left[\frac{r_{t}}{M_{t}}-\left|\frac{\hat{\mu}(t)}{M_{t}}\right|>4\right]\left|\log \left(\frac{r_{t}}{M_{t}}-\left|\frac{\hat{\mu}(t)}{M_{t}}\right|-3\right)\right|\right) \\
& +2\left(\mathbf{1}\left[\left|\frac{\hat{\mu}(t)}{M_{t}}\right|-\frac{r_{t}}{M_{t}}>3\right]\left[\left.\log \left(\left|\frac{\hat{\mu}(t)}{M_{t}}\right|-\frac{r_{t}}{M_{t}}-2\right) \right\rvert\,\right) B_{t} \leq 3+\right. \\
& +2\left(\mathbf{1}\left[\left|\frac{r_{t}}{M_{t}}-\frac{\hat{\mu}(t)}{M_{t}}\right|>3\right] \log \left(\left|\frac{r_{t}}{M_{t}}-\frac{\hat{\mu}(t)}{M_{t}}\right|-2\right)\right) B_{t} \leq \\
& +2\left(\mathbf{1}\left[\left|\frac{r_{t}-\mu_{A_{t}}}{\sigma}\right|>3(1-\delta)\right]+\mathbf{1}\left[\left|\frac{\mu_{A_{t}}-\hat{\mu}(t)}{\sigma}\right|>3 \delta\right]\right) \\
& +2\left(\mathbf{1}\left[\left|\frac{r_{t}-\mu_{A_{t}}}{\sigma}\right|>3\right]\right) \log \left(\left|\frac{r_{t}-\hat{\mu}(t)}{\sigma}\right|-2\right) \text { for each } \delta>0
\end{aligned}
$$

Upper Bound

$$
\begin{aligned}
\mathbb{E}\left[B_{t}\right] \leq & 3+\mathbb{P}\left[\left|\frac{r_{t}-\mu_{A_{t}}}{\sigma}\right|>2(1-\delta)\right]+\mathbb{P}\left[\left|\frac{\mu_{A_{t}}-\hat{\mu}(t)}{\sigma}\right|>2 \delta\right] \\
& +2\left(\mathbb{P}\left[\left|\frac{r_{t}-\mu_{A_{t}}}{\sigma}\right|>3(1-\delta)\right]+\mathbb{P}\left[\left|\frac{\mu_{A_{t}}-\hat{\mu}(t)}{\sigma}\right|>3 \delta\right]\right) \\
& +2 \mathbb{E}\left[\left(\mathbf{1}\left[\left|\frac{r_{t}-\mu_{A_{t}}}{\sigma}\right|>3\right]\right) \log \left(\left|\frac{r_{t}-\hat{\mu}(t)}{\sigma}\right|-2\right)\right] \\
\leq & 3.4+C \mathbb{E}\left[\left|\frac{\mu_{A_{t}}-\hat{\mu}(t)}{\sigma}\right|\right] \leq \cdots
\end{aligned}
$$

QuBan

(a) Pseudoregret vs T

(b) $\log _{10}$ (Pseudoregret) vs T

Pseudoregret vs. T for QuBan

Modified setup

- Agent full precision, learner bit-constrained? Trivial.
- Both bit-constrained?

Modified QuBan

- Learner too is communication-constrained
- Learner sends $\hat{\mu}(t)$ using 10 -bit SQ

Modified QuBan

(a) Pseudoregret vs T

(b) $\log _{10}$ (Pseudoregret) vs T

Pseudoregret vs. T for modified QuBan

Conclusion

- Presented the upper bound proof, and
- Numerical analysis for the setup where both the learner and agents are bit-constrained.

Thank you

