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Applications of Learning to Communication

@ Beam alignment (Vutha Va, Takayuki Shimizu, Gaurav Bansal, et al. “Online
Learning for Position-Aided Millimeter Wave Beam Training”. In: /EEE Access (2019),
Matthew B. Booth, Vinayak Suresh, Nicolo Michelusi, et al. “Multi-Armed Bandit Beam
Alignment and Tracking for Mobile Millimeter Wave Communications”. In: |[EEE
Communications Letters 7 (2019))

@ Rate selection (Harsh Gupta, Atilla Eryilmaz, and R. Srikant. “Link Rate Selection
using Constrained Thompson Sampling”. In: |[EEE INFOCOM 2019 - |IEEE Conference on
Computer Communications. 2019)

@ Bit-constrained communication (Osama A. Hanna, Lin F. Yang, and
Christina Fragouli. Solving Multi-Arm Bandit Using a Few Bits of Communication. 2021,
Aritra Mitra, Hamed Hassani, and George J Pappas. “Linear Stochastic Bandits over a

Bit-Constrained Channel”. In: arXiv preprint arXiv:2203.01198 (2022))
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Problem Setup

Central learner

Source: Osama A. Hanna, Lin F. Yang, and Christina Fragouli. Solving Multi-Arm
Bandit Using a Few Bits of Communication. 2021
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Problem Statement

o MAB problem, horizon n

@ Leaner chooses A; € A; and receives r; with mean pa,

e Goal: maximize expected regret, R, = E[> .} ;(u; — r)], where
i = MaXAc A, LA

action A;
[ Agent ] CHANNEL [ Learner ]
Plays A; and reward r; Calculates A¢i1
observes r; from H:
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Recall

Let n be the number of rounds.
@ ETC and e-greedy achieves O(+/n) with knowledge of A

@ Thompson sampling and UCB achieves O(+/nlog n) without knowing
A

e LinUCB achieves O(d+/nlog n)

These assumed full-precision rewards.
Goal: Develop quantization scheme to apply over any MAB algorithm

such that the quantized regret is only a constant factor off, while
maintaining a low number of bits
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Quantization

L: countable set

Quantizer consists of:
e &R L
e D:L—-R
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Stochastic Quantization

Let £ = {E} 1, X € [l1,458].
o i(x)=max{j|¢ < xandj<2B}

i(x)  with probability ﬁ

i(x)+1 with probability ﬁ
o Dr(j)=1¢,j€{1,...,28}

Conditioned on A¢, unbiased estimate of 4, is communicated.

o EC(X) =
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QUBAN

@ Maintains Markov property, unbiasedness, bounded variance for
quantized rewards

@ Uses a few bits for communication
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QUBAN: Main Ideas

o Center quantization scheme around value believed to be closest to
picked arm’s mean in majority of iterations

@ Quantization error conditionally independent on past history given A;

@ Assign shorter codes to values near quantization centre and o.w.
longer codes

@ Use SQ to convey unbiased estimate of reward
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QUBAN: Algorithm (Learner)

Algorithm 1 Learner operation with input MAB algorithm A

1 Initialize: fi(1) = 0

2 fort=1,...ndo

3 Choose an action A; based on the bandit

4 algorithm A and ask the next agent to play it

5 Send MJ, ii(t) to an agent

6: Receive the encoded reward (b;. I;. ., (e;)) (see
7 Algorithm [3)
8 Decode 7;:

9: if length(b,)< 4 then

10: 7 can be decoded using a lookup table

11 else

12 Decode the sign, s¢, of r; from b,

13: Set £, to be the I;-th element in the set

14: {0,20, ...}

15: Set Ly = {l;, l;+ 1, ..., max{20;, ¢, + 1}}

16: Let e” = Dy, (Ec,(e1))

17 fo = (se(el” 4 €+ 3.5) + 0.5+ L)/ M, )) M,
18; Calculate /i(¢ + 1) (using one of the discussed

19: choices)

20; Update the parameters required by A

Source: Osama A. Hanna, Lin F. Yang, and Christina Fragouli. Solving Multi-Arm Bandit Using

a Few Bits of Communication. 2021
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QUBAN: Algorithm (Agent)

Algorithm 2 Distributed Agent Operation
1: Inputs: ry, 4(t) and M,

2 Set L= {|7), [F1}, 7 = DL(EL(7r))

3: Set b; with three bits to distinguish between the 8 cases: 7y < —2,7; > 3,7 = i,i €
{~1,0,1,2}.

4 if |7¢| > |a| and 7ra > 0, a € {—2,3} then

5. Augment b, with an extra one bit to indicate if || = |a| + 1 or || > |a| + 1.

6 if |7,| > |a| + 1 then

7. Let L' = {0,2° ...}

8: Set ; = max{j € L|j < |ry| — |a|}

9: Encode ¢, by I, — 1 zeros followed by a one
10: (unary coding), where I; is the index of ¢;
11 in the set L'.

12: Let e; = |ry| — |a| — &

13: Set £; = {{;, ¢+ 1,...,max{2(,, {; + 1}}

14: Encode e, using SQ to get &, (e;)

15: Transmit (b;, ;, €z, (e))

Source: Osama A. Hanna, Lin F. Yang, and Christina Fragouli. Solving Multi-Arm Bandit Using
a Few Bits of Communication. 2021 1224
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Assumptions on MAB Instance and Algorithm

Assumption 1
All codes are prefix-free codes. Further,
© rewards possess Markov property; and

@ the expected regret is upper-bounded by RY.
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Regret Bound

Proposition 1
Suppose Assumption 1 holds. Then, when we apply QUBAN, the
following hold:
© Conditioned on A;, the quantized reward #; is
((1 + %) 0)2—subgaussian, conditionally independent on the history
A1, P, ..., A1, Fr—1 (Markov property), and satisfies E [y | At] =
pA,, |Fe — re] < My almost surely (t =1,...,n).
@ The expected regret R, is bounded as R, < (1 + %) RY, where ¢ is a
parameter to control the regret vs number of bits trade-off.
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Number of Bits

Theorem 1

Suppose Assumption 1 holds. Let e = 1. There is a universal constant C
such that, for QUBAN with:

Q [(t) = fia,(t — 1) (avg-arm-pt), the average number of bits
communicated satisfies that

E[B(n)] < 3.4+ $ Y1, log (1 + |ui| /o) + C//n.
Q i(t) = tfll Jt;ll 7; (avg-pt), the average number of bits
communicated satisfies

E[B(n)] < 3.4+ < (1 +log (1 + ]

>+’§"+Z?i11(f§)>+c/ﬁb
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Lower Bound

Theorem 2

For any memoryless algorithm that only uses quantized rewards, prefix-free

encoding and satisfies that for any MAB instance with subgaussian
rewards:

@ R, is sublinear in n,

@ Conditioned on ry, Fy — ry is (%)2—subgaussian (t=1,...,n),
there exist o2-subgaussian reward distributions for which:

Q (Vb e N)(3t,d > 0) such that P[B; > b] > 0.

@ (Vt > 0)(3n > t) such that E[B(n)] > 2.2 bits.
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Upper Bound
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QUBAN
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Modified setup

o Agent full precision, learner bit-constrained? Trivial.
@ Both bit-constrained?
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Modified QUBAN

@ Learner too is communication-constrained
o Learner sends i(t) using 10-bit SQ
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Modified QUBAN
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Conclusion

@ Presented the upper bound proof, and

@ Numerical analysis for the setup where both the learner and agents
are bit-constrained.
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