
EE 736: Introduction to Stochastic Optimization Project

Compression of Graphical Data

Adway Girish (180070002)

Submitted on: April 11, 2022

Abstract

In this report, I present a survey of some recent work on the compression of
graphical data. The aim is to understand the techniques used in the compres-
sion schemes. I do not provide complete proofs here, since they may be directly
referred to in the original publications. Instead, I look to provide intuitive ex-
planations and highlight the key ideas that make the schemes successful.

1 Introduction

Data in the form of graphs is now ubiquitous. This is primarily due to their simplicity
of representation which offers an incredible level of versatility and abstraction. In
applications such as social networks and molecular biology, the graphs used could be
very large. Naturally, finding efficient ways to compress graphs becomes essential to
make them useful for real-world applications. This forms the central theme of this
report.

In Section 2, I introduce the relevant preliminaries and present the notation that
will be used throughout, identical to [DA20a]. Also from the same paper is a universal
lossless compression scheme that forms the basis of this study, described in Section
3. When the graphs are sparse, [DA20b] obtains similar compression with a computa-
tionally optimal scheme, covered in Section 4. Section 5 also deals with sparse graphs,
but in a different regime of sparsity – heavy-tailed sparse graphs, as done in [DA21]. I
provide concluding remarks in Section 6.

2 Preliminaries and Notation

Before moving to studying different settings and their associated compression schemes,
there is an extensive set of notation that must be described.

1

General symbols and terms. [n] = {1, 2, . . . , n}, log is the natural logarithm,
{0, 1}∗ is the set of finite nonempty binary sequences, and nats(x) is the length of x in
nats, i.e. log 2 times the length of the binary representation of x. To define dLP(µ, ν),
the Lévy-Prokhorov distance between Borel probability measures on a complete sepa-
rable (Polish) space Ω, we require Bϵ, the union of all open balls of radius ϵ centered
at points in the Borel set B ⊂ Ω. Then dLP(µ, ν) is the infimum of all ϵ > 0 such that
µ(B) ≤ ν(Bϵ) + ϵ and ν(B) ≤ µ(Bϵ) + ϵ for all Borel sets B. Further, on the set of
Borel probability measures on a Polish space Ω, a sequence of measures µn converges
weakly to µ (µn ⇒ µ) if for any continuous bounded function on Ω,

∫
f dµn →

∫
f dµ.

For x ∈ Ω, δx is the Dirac measure at x

Basic graph notation. Note that we consider marked graphs, i.e. graphs where the
edges and vertices carry marks from some fixed, finite edge mark set Ξ and vertex mark
set Θ respectively. Let G be a graph, then V (G) represents its vertex set. Given a
vertex v ∈ V (G), τG(v) ∈ Θ is the mark of vertex v, and similarly, given directed edge
from vertex v to w, denoted by (v, w), we have ξG(v, w) ∈ Ξ, the mark of edge (v, w).
If there is an edge connecting vertex v to w, we write v ∼G w. The number of edges
connected to a vertex v is given by degG(v). Another notion of the degree is given

by degx,x
′

G (v), which is the number of neighbours w such that w ∼G v, ξG(w, v) = x,
and ξG(v, w) = x′. For some distinguished vertex o, (G, o) is a rooted marked graph,
rooted at o. An equivalence relation can be defined through a root preserving bijection,
then the equivalence class is given by [G, o]. Given an integer h ≥ 1, (G, o)h is the
restriction of (G, o) to a depth of h, i.e. containing vertices that are at most h distance
away from o. Naturally, we have [G, o]h = [(G, o)h]. Finally, G∆, for some positive
integer ∆, is the graph with the same vertex, but containing only those edges that are
whose endpoints are of degree at most ∆.

Convergence of graphs. Let Ḡ∗ be the space of equivalence classes [G, o]. To define
a metric on this space, first define ĥ as the supremum over integers h ≥ 0 such that
[G, o]h = [G′, o′]h, then set d̄∗([G, o], [G

′, o′]) = 1/(1 + ĥ). With this metric, we have
that Ḡ∗ forms a Polish space. We define U(G) to be the law of a graph [G, o], where o
is drawn uniformly at random in G, i.e. U(G) = 1

|V (G)|
∑

o∈V (G) δ[G,o]. These can also

be restricted to the space of trees T̄∗, instead of Ḡ∗, as the set of equivalence classes
[G, o] where G is a tree. We can further define Ḡh

∗ and T̄ h
∗ as the restrictions of Ḡ∗ and

T̄∗ to a depth h ≥ 1.

Compression basics. To encode a vector with k elements, we require a sequence of
length given by log k nats = log2 k bits.

2

3 Universal Lossless Compression

The aim is to have a compression scheme that is universal (does not make any as-
sumptions about the statistical properties of the data to be compressed) and lossless
(a decompression function should be prescribable to recover the original data perfectly).
The main result from [DA20a] is that not only is this possible, but also in an optimal
sense. Before formally describing these results, we require some more definitions, which
are given below.

Fix some finite marked graph G, with Ξ and Θ as its fixed and finite edge and
vertex mark sets respectively. Then define m⃗G = (mG(x, x

′) : x, x′ ∈ Ξ), the edge
mark count vector of G, where mG(x, x

′) is the number of edges (v, w) in G with
(ΞG(v, w),ΞG(w, v)) = (x, x′) or (x′, x). Similarly, the vertex mark count vector of G,
u⃗G = (uG(θ) : θ ∈ Θ), where uG(θ) is the number of vertices v in G with τG(v) = θ.

Now let m⃗ and u⃗ be some edge and vertex mark count vectors respectively. We
define ∥m⃗∥1 =

∑
x≤x′∈Ξm(x, x′) and ∥u⃗∥1 =

∑
θ∈Θ u(θ). Given an n ∈ N, we also

define G(n)
m⃗,u⃗ to be the set of marked graphs on the vertex set [n] with m⃗G = m⃗ and

u⃗G = u⃗. Clearly, we require ∥u⃗∥1 = n and ∥m⃗∥1 ≤
(
n
2

)
for G(n)

m⃗,u⃗ to be nonempty.

3.1 Main results

Let Ḡn be the set of marked graphs with vertex set [n] and edge and vertex mark set
given by Ξ and Θ respectively. Let {fn, gn}∞n=1 be a compression-decompression scheme
such that fn compresses Ḡn to {0, 1}∗ and gn decompresses {0, 1}∗ to Ḡn, and gn◦fn(G)
for all G ∈ Ḡn. Then we have the following results, which are rephrased from [DA20a].

Theorem 1. For all ‘good’ mark count vectors m⃗(n) and u⃗(n), and µ ∈ P(T̄∗), there

exists a sequence of positive ϵn ↓ 0, and G(n) drawn uniformly from G(n)
m⃗,u⃗(µ, ϵn) ={

G ∈ G(n)
m⃗,u⃗ : dLP(U(G), µ) < ϵn

}
, such that

lim inf
n→∞

nats
(
fn

(
G(n)

))
−
∥∥m⃗(n)

∥∥
1
log n

n
≥ Σ(µ) a.s.,

where Σ(µ) is the marked BC entropy (generalized from [BC14]).

The definition of the BC entropy is itself the result of several assumptions, which
are subsumed in our restriction to ‘good’ count vectors and distributions (see Theo-
rems 1 and 2 from [DA20a] for a more complete characterization – we need the count
vectors to be ‘adapted to’ average degree vectors, and distributions to be ‘unimodular’;
additionally, µ defined on the space of graphs not restricted to trees are also ‘bad’ –
Σ(µ) = −∞ in all these cases).

3

Theorem 2. There exists a lossless compression scheme {fn}∞n=1 such that for any
sequence of marked graphs G(n) with weak local limit µ ∈ P(T∗), we obtain

lim sup
n→∞

nats
(
fn

(
G(n)

))
− ∥m⃗G(n)∥1 log n
n

≤ Σ(µ) a.s. (1)

Theorem 1 says that for any lossless compression scheme, we have a lower bound
on the compressed length per unit vertex of the graph, that is linear with a notion of
‘entropy’ associated with µ. Conversely, Theorem 2 says that we have a scheme (given
below) that attains the same bound, thus making the scheme asymptotically optimal.

3.2 Compression scheme

We start with a simpler version of the scheme that makes an assumption on the graph
– that its maximum degree is at most ∆n.

We need some more definitions. Let k and ∆ be integers, then Ak,∆ is defined
as the (finite) set of equivalence classes of rooted marked graphs [G, o] ∈ Ḡ∗ with
depth at most k and maximum degree at most ∆. Let [G, o] ∈ Ak,∆, and let G(n)

be a marked graph on [n] with maximum degree at most ∆n. Then ψ
(n)

G(n)([G, o]) is

the set of vertices of G(n) that is locally isomorphic to [G, o] up to depth kn, i.e.

= {1 ≤ i ≤ n : [G(n), i]kn = [G, o]}. These sets ψ(n)

G(n)([G, o]) form a partition of [n] over

the range of [G, o] if G(n) has maximum degree at most ∆n.

3.2.1 First-step scheme

If the graph G(n) has maximum degree at most ∆n, we may encode it as follows:

1. Encode the vector
(∣∣∣ψ(n)

G(n)([G, o])
∣∣∣ , [G, o] ∈ Akn,∆n

)
, which lists the number of

times each element of Akn,∆n appears in G(n).

2. Add elements to the encoded vector to specify G(n) from W n, which is the set

of marked graphs G on [n] such that
∣∣∣ψ(n)

G(n)([G, o])
∣∣∣ =

∣∣∣ψ(n)

G(n)([G
′, o′])

∣∣∣ for all

[G′, o′] ∈ Akn,∆n .

Step 1 requires at most |Akn,∆n|(1 + ⌊log2 n⌋) nats, since
∣∣∣ψ(n)

G(n)([G, o])
∣∣∣ ≤ n for all

[G, o] ∈ Akn,∆n and step 2 requires at most 1 + ⌊log2 |Wn|⌋ nats. If kn and ∆n are

chosen such that |Akn,∆n| = o
(

n
logn

)
, and kn → ∞ with n, it can be shown by simply

writing out the expressions and calculating the required terms, that (1) is satisfied.
We can now use this first-step scheme to develop a general scheme.

3.2.2 General scheme

We first reduce our graph to satisfy the requirements for it to be compressed using the
first-step scheme above, then encode the leftover information separately, as follows:

4

1. Remove all edges connected to any vertex with degree more than ∆n = log log n,
and let the trimmed graph (with the same vertex set) be G̃n = (G(n))∆n .

2. Encode G̃n using the first-step scheme above.

3. Define Rn to be the set of endpoints of removed edges, ={
1 ≤ i ≤ n : degG(n)(i) > δn or degG(n)(i) > δn for some j ∼G(n) (i)

}
, and

encode |Rn|, then Rn.

4. Encode the vector m⃗G(n) − m⃗ ˜G(n) , which is the number of removed edges, then
encode the removed edges themselves.

Just as for the first-step scheme, a lengthy calculation verifies that (1) holds. The
complete proof is given in [DA20a].

4 Efficient Universal Compression of Sparse Graphs

A graph with n vertices can be called sparse if the number of edges are much smaller
than n2. An interesting way to maintain sparsity with structure is to have the number
of edges grow linearly in n. This is the regime that has been assumed here. Similar to
the compression scheme developed for arbitrary marked graphs in the previous section,
[DA20b] develops a universal lossless compression scheme that exploits sparsity to be
of a lower complexity. The key difference is that here, we further partition and encode
the edges separately based on their types, which reduces the complexity.

4.1 Main result

Similar to Theorem 2, we have a theorem guaranteeing the existence of an optimal
compression scheme, given by Theorem 3 below.

Theorem 3. There exists a lossless compression scheme {f (n)
h,δ } with positive integer

parameters h and δ, satisfying:

1. optimality. For a sequence G(n) of marked graphs such that U(G(n)) ⇒ µ, again
a ‘good’ distribution on T̄∗, let m

(n) be the number of edges in G(n). Then we have

lim sup
h→∞

lim sup
δ→∞

lim sup
n→∞

nats
(
f
(n)
h,δ

(
G(n)

))
−m(n) log n

n
≤ Σ(µ) a.s.,

where Σ(µ) is the marked BC entropy, as described in Section 3.

2. low computational complexity. The complexity of the compression and decom-
pression algorithm is O(n polylog(n)) = O

(
n(log n)k

)
for some positive integer k.

We also have a lower bound of Ω(n log n), which makes the scheme asymptotically
computationally optimal up to factors of log n.

To justify the optimality claim, there exists a converse statement similar to Theorem
2, which says that we need Σ(µ) nats to encode each vertex of the graph.

5

4.2 Compression algorithm

Recall that the improvement that makes this algorithm efficient is that the edges are
further divided into groups and each group (which is now an unmarked graph) is
encoded separately. Here I provide a summary of the scheme, describing essentially
what happens at each step. For more details refer to [DA20b].

1. Define F δ,h to be the set of all (x, [T, o]) ∈ Ξ× T̄ h−1
∗ such that degT (o) < δ and

degT (v) ≤ δ for v ̸= o. Further, we also define a fictitious symbol ⋆x for each
x ∈ Ξ. Then the set of edge types that we will partition our graph into is given
by F δ,h∪{⋆x : x ∈ Ξ}. The exact allotment of types is a little more complicated.

2. Calculate the edge types across all vertices using a message passing algorithm.

3. Encode the ‘star vertices’ and ‘star edges’, which are the vertices and edges
corresponding to the edges marked with the ⋆x type for some x ∈ Ξ. The star
edges account for the largest length portion in the compressed output. The
encoding is done by comparing with possible vertices that it could be connected
to, sharing an edge with the same type, and adding that information to the
output.

4. Next, we encode the ‘vertex types’, which store the marks and number of vertices
with those marks for each edge type.

5. Finally, we encode the edges that are not star edges. This is done by partitioning
the leftover edges from the graph to form several unmarked graphs (with vertices
having small degrees). Each of them can be easily encoded separately.

While the scheme may appear complicated with details and unclear without, the
takeaway is quite straightforward – we first separate the edges with high degrees at
the vertices and encode them, then encode the unmarked graphs that partition the
remaining edges.

5 Heavy-Tailed Sparse Graphs

In Section 4, the sparsity regime considered had the number of edges growing linearly
with the number of vertices n. However, they can remain sparse even if their edges
grow superlinearly with n – they give rise to sparse graphs whose degree distributions
have heavy tails. To differentiate between the two regimes, we call the former sparse
graphs and the latter heavy-tailed sparse graphs. The heavy-tailed regime is addressed
by introducing the notion of sparse graphons, which then define a new metric.

5.1 Sparse graphon framework

On a probability space (Ω,F , π), define the graphon W : Ω×Ω → R+, the set of nonneg-
ative real numbers, which is symmetric and satisfies ∥W∥1 =

∫
W (x, y) dπ(x)dπ(y) <

6

∞. More generally, an Lp graphon satisfies ∥W∥pp =
∫
(W (x, y))p dπ(x)dπ(y) < ∞. If

∥W∥1 = 1, the graphon W is normalized.
For L2 graphons W and W ′ defined on (Ω,F , π) and (Ω′,F ′, π′), we define the

metric

δ2(W,W
′) = inf

ν

√∫
|W (x, y)−W ′(x′, y′)|2dν(x, y)dν(x′, y′),

where ν takes all possible joint distributions on Ω× Ω′ such that the marginals are π
and π′.

Given a normalized graphon W and the target densities ρn, we can generate a
sequence of graphs G(n) that are said to be W -random by independently placing edges
between vertices v and w with probability 1 ∧ ρnW (Xv, Xw), where Xi are generated
i.i.d. according to π. The law of G(n) is given by G(n; ρnW). We further define a
notion of sparse graphon entropy,

Ent(W) = E[W logW]− E[W] logE[W].

When W is normalized, we simply have Ent(W) = E[W logW]. Recall that the defi-
nition of information-theoretic entropy for a random variable X with mass function p
on {1, . . . , n} is given by H(X) = −

∑n
i=1 p(i) log p(i). This suggests that the sparse

graphon notion of entropy in fact measures the uncertainty in an inverse sense. Thus
we expect that the bound on the length of the code needed should vary opposite to
Ent(W) (which, as we will see in (2), is indeed the case).

5.2 Main result

Just as in the previous settings, we have a result that gives the existence of an optimal
compression scheme.

Theorem 4. Let nρn ≥ an where (an : n ≥ 1) is known to both the encoder and the
decoder, with an → ∞ as n → ∞. Then, we can choose parameters (∆n : n ≥ 1) such
that the compression scheme

((
f∆n
n , g∆n

n

)
: n ≥ 1

)
achieves optimal universal compres-

sion, i.e. if G(n) ∼ G (n; ρnW) is a sequence of W -random graphs with target densities
ρn, whereW is a normalized L2 graphon, with

(
m̄n=n
2ρn

)
assuming that ρn → 0 as n→ ∞,

with probability 1 we have

lim sup
n→∞

nats
(
f∆n
n

(
G(n)

))
− m̄n log

1
ρn

m̄n

≤ 1− Ent(W). (2)

The scheme that achieves the bound is given below.

5.3 Compression scheme

The scheme makes use of a splitting method, with splitting parameter ∆n, to split G(n)

into G
(n)
∆n

, which dominates when G(n) comes from the weak convergence regime from

7

the previous sections, and G
(n)
∗ dominates when G(n) comes from the sparse graphon

framework. The compression of G
(n)
∆n

is done similarly to that of linear sparse graphs

as in Section 4. For G
(n)
∗ , we require sparse graphon estimation, which estimates W

given a sequence of W -random graphs. Details are provided in [DA21]. The key idea
that makes this extension possible is that it is possible to split the graph into a part
which is taken care of by the existing sparse regime, and the remainder can be dealt
using the new sparse graphon framework.

6 Conclusion

I have summarized three papers that deal with universal lossless compression of marked
graphs. However, there were several other papers I had hoped to cover to make this
a more complete representation of the developments in graphical compression. Time-
constraints restrict them to merely concluding remarks. All of the above schemes
assume that the entire data is available with a single entity, which may not always be
the case – hence [DA18] discusses distributed compression. Further, the schemes de-
tailed in this report have all been asymptotic; [BS22] achieves fixed-length, universal,
but lossy compression, which allows for some inaccuracy locally around each vertex.
Almost posing as a converse problem to the compression of sparse graphs, [TMS18]
looks at the compression of graphs that are generated by duplication models, where one
picks random vertices from existing graphs and clone them – here there is redundant
data hiding in these duplications – this is exploited in compressing unmarked graphs
with vertices that may be labelled or unlabelled. Since graphs have innumerable ap-
plications, there is no dearth of possible directions to probe.

References

[DA20a] Payam Delgosha and Venkat Anantharam. “Universal Lossless Compression
of Graphical Data”. In: IEEE Transactions on Information Theory 66.11
(2020), pp. 6962–6976. doi: 10.1109/TIT.2020.2991384.

[DA20b] Payam Delgosha and Venkat Anantharam. “A Universal Low Complexity
Compression Algorithm for Sparse Marked Graphs”. In: 2020 IEEE Inter-
national Symposium on Information Theory (ISIT). 2020, pp. 2349–2354.
doi: 10.1109/ISIT44484.2020.9174300.

[DA21] Payam Delgosha and Venkat Anantharam. “A Universal Lossless Compres-
sion Method applicable to Sparse Graphs and heavy-tailed Sparse Graphs”.
In: 2021 IEEE International Symposium on Information Theory (ISIT).
2021, pp. 2792–2797. doi: 10.1109/ISIT45174.2021.9517897.

8

https://doi.org/10.1109/TIT.2020.2991384
https://doi.org/10.1109/ISIT44484.2020.9174300
https://doi.org/10.1109/ISIT45174.2021.9517897

[BC14] Charles Bordenave and Pietro Caputo. “Large deviations of empirical neigh-
borhood distribution in sparse random graphs”. In: Probability Theory and
Related Fields 163.1-2 (Nov. 2014), pp. 149–222. doi: 10.1007/s00440-
014-0590-8. url: https://doi.org/10.1007%2Fs00440-014-0590-8.

[DA18] Payam Delgosha and Venkat Anantharam. “Distributed Compression of
Graphical Data”. In: 2018 IEEE International Symposium on Information
Theory (ISIT). 2018, pp. 2216–2220. doi: 10.1109/ISIT.2018.8437614.

[BS22] Ronit Bustin and Ofer Shayevitz. “On Lossy Compression of Directed Graphs”.
In: IEEE Transactions on Information Theory 68.4 (2022), pp. 2101–2122.
doi: 10.1109/TIT.2021.3132290.

[TMS18] Krzysztof Turowski, Abram Magner, and Wojciech Szpankowski. “Compres-
sion of Dynamic Graphs Generated by a Duplication Model”. In: 2018 56th
Annual Allerton Conference on Communication, Control, and Computing
(Allerton). 2018, pp. 1089–1096. doi: 10.1109/ALLERTON.2018.8636034.

9

https://doi.org/10.1007/s00440-014-0590-8
https://doi.org/10.1007/s00440-014-0590-8
https://doi.org/10.1007%2Fs00440-014-0590-8
https://doi.org/10.1109/ISIT.2018.8437614
https://doi.org/10.1109/TIT.2021.3132290
https://doi.org/10.1109/ALLERTON.2018.8636034

	Introduction
	Preliminaries and Notation
	Universal Lossless Compression
	Main results
	Compression scheme
	First-step scheme
	General scheme

	Efficient Universal Compression of Sparse Graphs
	Main result
	Compression algorithm

	Heavy-Tailed Sparse Graphs
	Sparse graphon framework
	Main result
	Compression scheme

	Conclusion

