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Abstract—This is the final project report for EE 706: Com-
munication Networks, offered in Spring 2022 at IIT Bombay.
We propose Chaotic Espresso, which is a combination of two
schemes, one of which is well-established, and the other is a
recent phenomenon. Our goal for the project is broadly to study
and improve on algorithms for cryptography in the Internet of
Things (IoT). We have performed an extensive literature survey
for the same, to identify flaws and shortcomings in the existing
schemes. We then provide a description of our proposed design
and elaborate on its improvements over its predecessors.

Index Terms—Espresso, Chaotic cryptography, Lightweight
cryptography, Internet of Things (IoT), Stream cipher

I. INTRODUCTION

The Internet of Things (IoT) refers to an up-and-coming
technology that enables a system of interconnected devices,
machines or living things to communicate with each other
and/or the Internet without the need for human interaction.
A typical IoT setup would include end devices fitted with
sensors that collect (mostly real-time) data to be shared or
analyzed for various purposes such as monitoring, control etc.
Such a technology would be privy to vast volumes of data and
hence ensuring authentication, confidentiality, data integrity
and access control while data is being shared in these systems
is essential [1].

Some of the challenges involved in ensuring secure com-
munication in IoT are the following [1]:

1) Complex algorithms are not suitable for the CPU in IoT
devices as they have limited capabilities.

2) As some of the devices in the IoT network are likely
to be battery-powered, the power consumption of the
security algorithm should be minimized.

3) Some IoT applications involve a large number of rudi-
mentary sensors connected to cover a large physical
network.

4) The implementation of the security algorithm must be
cost-effective and should minimize the number of de-
vices to be deployed.

Conventional cybersecurity cryptography such
as AES (Advanced Encryption Standard), RSA
(Rivest–Shamir–Adleman), DES (Data Encryption Standard),
Blowfish, and RC6 cannot be used here exactly as these
algorithms consume a large amount of energy while operating,
the IoT network is heterogeneous and dynamic, and due to
the need for scalability to larger networks [1]. This calls for

the development of Lightweight Cryptography techniques for
applications such as IoT and low power, lossy systems in
general.

The IoT architecture contains four distinct critical layers:
(i) perception layer, (ii) network layer, (iii) middleware layer,
and (iv) application layer [2]. The latter two layers use
resource-rich devices that can use traditional cryptography for
security [1] and hence the focus is on developing lightweight
cryptographic techniques for the former two layers.

The aim of the project is to propose a new lightweight
cryptography scheme that can be used for IoT applications.
This paper is organized into five sections. Section I introduces
IoT and motivates the need for lightweight cryptographic
techniques. Section II goes into further detail on the broad
area of lightweight cryptography. In Section III, we focus
on lightweight stream ciphers, which are a particular type
of symmetric cipher, which look promising and are widely
studied for resource-constrained applications. We explain the
concepts of Espresso and a chaos-based cryptographic scheme,
Logic, in Sections IV and V respectively. We then describe
our proposed ‘Chaotic Espresso’ in Section VI. We end by
outlining the contributions of each team member in Section
VII and then providing some concluding remarks in Section
VIII.

II. LIGHTWEIGHT CRYPTOGRAPHY FOR IOT

IoT networks generally involve a number of devices, each
using different operating systems and communication proto-
cols. This heterogeneity leads to considerable security and pri-
vacy threats. In particular, we discuss security in the network
and perception layers due to resource constraints mentioned
previously.

The network layer involves secure routing and transmission
of data across the IoT infrastructure. It generally uses protocols
such as Zigbee, Bluetooth and IR for transmission. It is
susceptible to attacks such as eavesdropping, device cloning,
spoofing, DDoS and key-related attacks. The perception layer
consists of devices such as sensors and actuators, that gather,
process or modify data. It consists of two parts: perception
nodes and the perception network. It is susceptible to physical
capture of nodes, code injection, jamming, replay and battery
draining attacks.

Due to limitations of processing power, memory, power con-
sumption, etc. present in IoT devices, lightweight cryptogra-
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phy is necessary to operate on the given network. A network’s
effectiveness is determined by its design complexity (gate
value/GE), power consumption, throughput and the underlying
CMOS technology. Securing communication consists of two
components: cipher algorithms, used to encrypt and decrypt
data, and key management, used to generate, distribute, store
and destroy secret keys. Cipher algorithms may be symmetric,
which use smaller key lengths at the cost of more vulnerability
to attack, or asymmetric, which use greater complexity at the
cost of being slower. There also exist lightweight hashing func-
tions such as LNHASH, PHOTON, HVH and SPONGENT,
and lightweight message authentication codes (MACs) such
as LightMAC and CHASKEY.

Some examples of recent lightweight cryptographic proto-
cols in IoT security along with their features are given below:

• Lightweight hybrid cryptography (LWHC): uses a com-
bination of LED and PRESENT ciphers (64 bit block
cipher), however uses a 128 bit SPECK key scheduling
algorithm, which makes the protocol both lightweight and
secure from key attacks. It is still vulnerable to other
attacks

• Lightweight stream cipher (LSC): uses cryptographic
primitives, which change dynamically and use less opera-
tions/processing power from block to block. This protocol
is highly secure and resistant to statistical, algebraic
and brute force attacks, but not to disclosure and de-
synchronisation attacks

• SAT Jo system: based on substitution-permutation net-
work of a block cipher with DES and PRESENT with 31
rounds. It offers adequate security for tag-based applica-
tions, and a good balance between performance/resource
requirements and security.

The following parameters are used to evaluate performance
of a lightweight cryptography protocol:

Key size: Keys of greater length provide more robustness
but require more power and complexity. Typical 128 bit keys
such as AES, LED, RECTANGLE are unsuitable for resource-
constrained devices. However, the modified QARMA (64 bit),
SAT Jo, modified PRESENT, Piccolo, KTANTAN (80 bit) are
all suitable for IoT devices.

Block size: Larger block sizes (such as in AES - 128 bit
blocks) require more computation and battery power. Hence,
smaller block sizes (typically 64 bits) are suitable for IoT
devices. SIMON applies one of the lowest block lengths of
46 bits

Gate area: Gate Equivalent (GE) measures the physical area
required to execute an algorithm. Power consumption can be
determined accordingly using GE value and CMOS technol-
ogy. ISO/IEC standard specifies that lightweight cryptography
should have GE value 1000-2000. For example, GE value of
AES is 2400, whereas that of SAT Jo us 1167.

Number of rounds: Round based execution is used in
encryption using the key, with more number of rounds giving

greater security. Cryptographic designing aims to decrease the
number of rounds necessary in the algorithm. AES typically
uses less rounds (10-14) but has large GE. Piccolo is a suitably
lightweight algorithm that uses less number of rounds (25)
compared to others like SAT Jo (31) and SFN (32).

Latency: It is the time taken to generate encrypted output
after initial approach of encryption. It is critical for real time
applications. Low computational complexity is necessary to
ensure low latency. PRINCE, QARMA and modified QARMA
have some of the lowest latencies (12, 1, 27 cycles respec-
tively).

Throughput: Measure of number of bits transformed per
unit time at specified frequency. IoT applications require mod-
erate throughput, lower than that in traditional cryptography.
SAT Jo cipher allows high throughput (14.9Mbps) at low
latency

Confusion/diffusion properties: Confusion is the property
arising from substitution in a cipher (through S-box), distorting
the relationship between plaintext, key and ciphertext. Diffu-
sion is the property arising from permutation (through P-box),
scattering the statistical structure of plaintext over ciphertext.

Broadly, by varying the key complexity, architecture and
computational iterations, there is a trade-off between the cost,
performance and security of the IoT network, as demonstrated
in Figure 1.

Fig. 1. The trade-off between cost, performance and security needed while
designed cryptography schemes for IoT [1]

III. PRIOR WORK ON STREAM CIPHERS

Stream ciphers encrypt and decrypt data one bit at a time.
The ciphertext is obtained by simply XORing the plaintext
with the keystream, bit-by-bit. They generally make use of
linear and nonlinear feedback shift registers, hence are faster,
of a low complexity, and consume less power [3]. One
drawback, however, is that the setup prior to the first use
requires a lot more effort. Nonetheless, they are widely applied
in wireless sensor networks and cell phones thanks to their
simplicity.
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Around the early 2000s, the interest in stream ciphers had
actually begun to decrease, as seen by the replacement of the
stream cipher RC4 by the block cipher AES in the improved
wireless standard 802.11i. Their simplicity of implementation
and design, however, meant they remained enticing prospects,
and a large amount of work on stream ciphers began during
that period thanks to the European Network of Excellence
in Cryptology (ECRYPT) introducing the eSTREAM project
[4], encouraging hardware and software implementations of
stream ciphers. The pioneering works in this direction include
Trivium [5], Grain [6], Fruit [7], MICKEY [8], Espresso [9],
LIZARD [10] and Sprout [11], among others. Each of them
introduced what was, at the time, a radically different idea,
that gives us different dimensions to pursue while designing
cryptographic systems.

A. Predecessors

Grain [6] makes use of a nonlinear filter function, which
allows it to perform better than purely hardware focussed
schemes. Trivium [5] helped revive the interest in stream
ciphers by providing a reliable strategy, as opposed to the
previously structure-less schemes that were all very different
from each other, also providing flexibility for hardware imple-
mentation. In typical stream ciphers, we require that the size
of the internal state must be at least twice that of its security
level, to protect against time-memory-data trade-off (TMDTO)
attack [12]. However, the design key can be exploited to reduce
the internal state size, as done in Fruit [7]. LIZARD [10]
obtains a similar improvement by modifying the initialization,
making it harder to recover the secret key. Even at the time of
introduction, MICKEY [8] was not intended to be particularly
fast, but it was designed specifically for resource-constrained
devices.

Unfortunately, while stream ciphers offer simpler imple-
mentations than block ciphers, they have also been discovered
to be much weaker in the face of attacks. Several vulner-
abilities have been exposed in recent years thanks to the
advancements in decoding technology. Additionally, to apply
these schemes in protecting resource-constrained IoT devices,
we require that they be as efficient and low-power as possible.
For example, Grain suffers from having large propagation
delays and Trivium requires too many flip-flops to achieve
the same security level.

B. Newer Schemes

Most of the above schemes have been improved with minor
variations, for example, Grain-128a [13] offers additional
authentication. Another cipher that has achieved widespread
attention is Espresso [9], designed primarily for application
in 5G communication. It belongs to the Grain family, but
manages to obtain a significantly shorter propagation delay,
while also providing a formal analysis and roubstness to vari-
ous attacks, such as linear approximation, algebraic, TDMTO,
and chosen IV attacks. It has, however, been shown to be
vulnerable to differential fault attacks [14].

A Lightweight Stream Cipher (LSC) scheme [15] has been
introduced, which manages to outperform the traditional AES
scheme, by using a dynamic key approach. However, using
dynamic keys requires large memory to store the parameters
and computational power to encrypt and decrypt. While LSC
uses less resources than previous dynamic key approaches,
it would save a lot of precious resources that could be used
elsewhere on the IoT device if dynamic keys are avoided.

Finally, we also present the idea of chaotic cryptography
[16]. They were first applied to stream ciphers by combining
them with nonlinear feedback shift registers in Logic [17].
Entropy analysis techniques can be used to mathematically
analyze them. They have been shown to be secure against
algebraic, TMDTO, fault, linear approximation and correlation
attacks. However, they suffer from floating-point computations
and finite periodicity.

We now go into Espresso and Chaos-based cryptography in
some detail, to set up the basis to introduce our work.

IV. ESPRESSO

A. Preliminaries

An n-bit Feedback Shift Register (FSR) consists of n stages
that store a binary value. Each stage i ∈ {0, . . . , n − 1} is
associated with a state variable xi and a feedback function fi :
GF(2n) → GF(2), which is used to update the value of the
state variable at the end of each clock cycle. If all the feedback
functions are linear, then the FSR is called Linear (LFSR), else
Non-Linear (NFSR). A state of an FSR is a vector of values
of its state variables. The next state is computed by updating
the value of each stage to that of its corresponding feedback
function. The period of an FSR is the length of the longest
cyclic output sequence it produces. In the Galois configuration,
the feedback can potentially be applied to every stage while
in the Fibonacci configuration, the feedback is applied to the
input stage only.

B. Design

Espresso [9] uses FSRs in the Galois configuration, which
makes the feedback functions smaller compared to the Fi-
bonacci configuration (which is the case in Grain) and hence
reduces the propagation delay. For cryptographic analysis to be
possible, the Galois NFSR is transformed to an NFSR which
resembles a Fibonacci configuration.

There is a 256 bit NFSR G in the Galois configuration and
a 20-variable nonlinear output function. The feedback function
for stage i is gi. Nine of these are non-trivial and the exact
formulations of these functions can be found in [9]. The output
function z(x) is:

z(x) = x80 ⊕ x99 ⊕ x137 ⊕ x227 ⊕ x222 ⊕ x187 ⊕ x243x217

⊕ x247x231 ⊕ x213x235 ⊕ x255x251 ⊕ x181x239

⊕ x174x44 ⊕ x164x29 ⊕ x255x247x243x213x181x174.

NFSRs in the Fibonacci configuration have been studied
extensively and hence the need for transforming from Galois
to an equivalent configuration F that resembles the Fibonacci
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configuration. This transformation is shown in Fig. 2. F has
only two non-trivial feedback functions g255 and g217. ki, 0 ≤
i ≤ 127 denotes the key and IVi, 0 ≤ i ≤ 95 denotes the
initialization vector. The shift register is loaded as:

xi = ki, 0 ≤ i ≤ 127
xi = IVi−128, 128 ≤ i ≤ 223
xi = 1, 224 ≤ i ≤ 254
xi = 0, i = 255

Fig. 2. NFSR for Espresso

C. Takeaways

Here are the main points that are relevant to us, from the
above design scheme as well the analysis from [9]:

1) A cryptographic analysis is made possible by the use of
a Fibonacci configuration NFSR.

2) A linear approximation attack as was possible against
Grain [6] is no longer possible as it requires 2127

samples, making it inefficient.
3) Time-Memory-Data Trade-Off (TMDTO) attacks re-

quire a precomputation time of 2168, which is very large
compared to a key size of 128 bits.

4) There is also protection from the chosen IV attacks
thanks to the large number of initialization steps which
adds sufficient randomness.

V. LOGIC

Logic [17] is a lightweight chaos-based stream cipher
which has desirable properties such as extreme sensitivity to
initial conditions, pseudo-random behavior, and long-period
instability. These arise due to the use of the chaos equation,
for some constant µ,

x(n+ 1) = µx(n) [1− x(n)], µ ∈ [0, 4], x(n) ∈ (0, 1).

The key point is that small differences in the initial condition
can lead to large differences in the keystream generated. By
restricting our sequences to be represented by L-bit precision,
taking µ = 4 and L = 32, our equation becomes

Xn+1 = 4Xn
(2L −Xn)

2L
.

A. Design

The flow diagram of the stream cipher is shown in Fig. 3.
The main constituents are the following:

• the feedback polynomial of NFSR-1 (Nonlinear Shift
Feedback Register), g(x),

• the feedback polynomial of NFSR-2, f(x),
• the filtering function h(x),
• the chaotic unit, Logistic,
• the multiplexers M1, M2, M3,
• the output Z(x).

The NFSRs drive the key generation. The feedback polynomi-
als are fixed and their expressions can be found in [17]. We
omit them here since they are long and unnecessary for our
discussion. The task of the chaotic module is to introduce the
confusion in the NFSRs. The other components are simply
a combination of several Grain [6] series ciphers. The final
output is a combination of the outputs of the filter, NFSR-1
and the chaotic module, which adds more confusion.

B. Takeaways

From the above design and its analysis from the paper [17],
we make the following observations that are crucial to our
work.

1) The main part is the logistic chaos module.
2) The role of the other components is just to make it work

as a stream cipher. Hence the other components may be
suitably replaced by a different stream cipher as needed.

3) The use of two NFSRs provides protection from alge-
braic attacks by increasing the level of nonlinearity.

4) Since the NFSRs can be assumed to be independent of
each other, we also have protection against correlation
attacks.

5) This is no longer vulnerable to fault attacks (where a
single bit error is introduced into the NFSR), as a mirror
image can be used in the two-stage NFSR setup that we
have here.

6) This scheme also passes the NIST statistical tests.

VI. OUR CONTRIBUTIONS

In this section, we propose a new lightweight cryptographic
stream ciphers that combines the best parts of Espresso with
those of Logic, named ‘Chaotic Espresso’.

A rough flow diagram of the same is shown in Fig. 4.
The key idea is that we replace the NFSRs inspired by Grain
with the Espresso. The various inputs and outputs from the
‘Espresso’ block in the figure are described later.

A. Design

Here we provide details of the how the Espresso is incor-
porated with the Logistic stream cipher setup.

• We require that the Logistic module interacts with all
NFSRs in Espresso, so we first add another input at the
left end of Fig. 2, which arises from the chaotic Logistic
module.

• Further, we require a recursive relation to complete the
chaos loop, which is done by connecting the output of the
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Fig. 3. The logic stream cipher

register at the right end of Fig. 2 back to the multiplexers
connected to the chaotic module, after passing them
through an appropriate filter function.

The exact functions and indices will need to be tweaked
following numerical simulations.

B. Strengths

The benefits this provides are as follows:
1) Since we are combining the two schemes without remov-

ing the effect of either one, we have that the securities
provided by each scheme remains intact.

2) In addition, this has the benefit that unlike Logic, a linear
approximation attack is not possible.

3) Further, unlike standard Espresso, differential fault at-
tacks will not work on Chaotic Espresso as we use a
two-stage NFSR, which allows for mirroring or masking
in the hardware.

4) Espresso has a complicated key initialization stage,
which ensures protection from chosen key attacks, but
that can be made simpler as the chaotic nature of the
Logistic module provides this protection directly.

5) Espresso itself uses a smaller chip area than a standard
two-NFSR implementation.

VII. INDIVIDUAL CONTRIBUTIONS

Our work strategy was as follows: each member of the group
first proposes some ideas and literature to study, following
which we all go through them and discuss together to come
up with a plan and identify the next step. Here are the

contributions of each member in terms of introducing possible
directions to the discussion.

• Adway Girish (180070002): suggested lightweight cryp-
tography as the primary topic and identified the applica-
tion of chaotic cryptography to stream ciphers; identified
the key takeaways from Espresso and proposed the design
for combining Espresso with Logic.

• Fathima Zarin Faizal (180070018): suggested security
vulnerabilities in Wi-Fi as the primary topic and reviewed
Espresso; identified the key takeaways from Espresso and
Chaos, and the improvements in Chaotic Espresso.

• Sai Anirudh M (180070048): suggested zero trust archi-
tecture as the primary topic and identified stream ciphers
as the area of focus; proposed the design of and identified
the improvements in Chaotic Espresso.

VIII. CONCLUSION

We have proposed ‘Chaotic Espresso’, a new lightweight
stream cipher that combines the principles of the recently
growing chaotic cryptography with Espresso, which is well-
established. We claim that our proposed design is capable of
handling and dealing with all well-known, standard attacks. A
weakness of our proposal is that we do not have simulation
results to support our claims. This is due to the lack of time
and computational resources at our disposal, and we leave it
as potential future work. Further future work is possible in the
direction of entropy analyses of the proposed scheme, which
provides theoretical support to our claims.
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Fig. 4. Proposed Chaotic Espresso
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