EE618
 Course Project Operational Amplifier Design

Autumn 2020

Group 13
Adway Girish 180070002
Anjana Singh 180070008

Contents

1 Design Flow 3
1.1 Iteration 1 3
1.1.1 Slew Rate 3
1.1.2 Unity Gain Bandwidth 3
1.1.3 Phase Margin 4
1.1.4 Open loop Gain 4
1.1.5 Iteration 1 Results 6
1.2 Iteration 2 7
1.2.1 Results 7
1.3 Bias Currents and Voltages 9
1.4 Transistor sizes 9
2 Reference Current/Voltage Generation 10
2.1 Circuit 10
2.2 Design Procedure 10
2.3 Transistor Sizes 11
3 DC Simulations 12
$4 \quad$ AC Simulations 13
5 Slew Rate Simulation 16
6 Transient Simulation 17
7 Common Mode DC Simulation 18
8 Work Contribution 19

Target requirements and specifications

Design an Op-Amp inspired from TI OPA344/345 with the following specifications.

- Single ended output
- Open loop small signal low-frequency voltage gain $>100 \mathrm{~dB}$
- Unity gain bandwidth $>10 \mathrm{MHz}$
- Input CM voltage range: 100 mV to 1.7 V
- Output voltage range: 100 mV to 1.7 V
- Phase margin $>60^{\circ}($ Load capacitance $=5 \mathrm{pF})$
- Slew rate $>2 \mathrm{~V}_{\mathrm{s}}{ }^{-1}($ Load capacitance $=5 \mathrm{pF})$

180 nm Technology parameters

Here are the constant values assumed for 180 nm technology:

$\mu_{n} C_{o x}$	$300 \mu A / V^{2}$
$\mu_{p} C_{o x}$	$68 \mu A / V^{2}$
λ_{n}	$0.1 V^{-1}$
λ_{p}	$0.2 V^{-1}$
$\left\|V_{T P}\right\|$	$0.4 V$
$V_{T N}$	$0.4 V$

Table 1: Data assumed for 180 nm Technology

1 Design Flow

We start by letting $V_{\mathrm{DSAT}, \mathrm{P}}=0.25 \mathrm{~V}$ and $V_{\mathrm{DSAT}, \mathrm{N}}=0.2 \mathrm{~V}$.

1.1 Iteration 1

1.1.1 Slew Rate

Slew Rate, $\mathrm{SR}>2 \mathrm{~V} \mathrm{\mu s}^{-1}$
$C_{C}=4 p F$

$$
\begin{aligned}
& \mathrm{SR}=\frac{I_{\text {bias }}}{C_{c}+C_{L}} \geq 2 V / \mu s \\
& \Longrightarrow I_{\text {bias }} \\
& \geq 2 \mathrm{~V} \mathrm{ss}^{-1} \times(4 \mathrm{pF}+5 \mathrm{pF})=18 \mu \mathrm{~A} \\
& \therefore \text { Take } I_{\text {bias }}=40 \mu \mathrm{~A}
\end{aligned}
$$

From the circuit

$$
\begin{aligned}
I_{D, 19} & =\left(1+\frac{C_{L}}{C_{C}}\right) I_{\mathrm{bias}}=\left(1+\frac{5}{4}\right) 40 \mu \mathrm{~A} \\
& =90 \mu A \\
& \approx 100 \mu A \\
\left(\frac{W}{L}\right)_{19} & =\frac{2 I_{D, 19}}{\mu_{p} C_{o x} V_{\mathrm{DSAT}, \mathrm{P}}^{2}} \\
& \approx 42.35
\end{aligned}
$$

Since the current through M_{19} and M_{20} is the same, we have

$$
\begin{aligned}
\left(\frac{W}{L}\right)_{20} & =\frac{2 I_{\mathrm{D} 20}}{\mu_{n} C_{o x} V_{\mathrm{DSAT}, \mathrm{~N}}^{2}} \\
& \approx 15
\end{aligned}
$$

1.1.2 Unity Gain Bandwidth

Unity Gain Bandwidth, $F_{u} \geq 10 \mathrm{MHz}$

$$
\begin{aligned}
F_{u}=\frac{g_{m, 1}}{2 \pi C_{c}} & \geq 10 \mathrm{MHz} \\
\Longrightarrow g_{m, 1} & \geq 10 \mathrm{MHz} \times 2 \pi \times 4 \mathrm{pF} \\
g_{m, 1} & \geq 2.51 \times 10^{-4} S
\end{aligned}
$$

Assuming $g_{m, 1}=g_{m, 2}=g_{m, 3}=g_{m, 4}$

$$
\begin{aligned}
\left(\frac{W}{L}\right)_{1,2} & =\frac{g m_{1}^{2}}{2 \mu_{n} C_{o x} I_{d}} \\
& \approx 5.25 \\
\left(\frac{W}{L}\right)_{3,4} & =\frac{g m_{1}^{2}}{2 \mu_{p} C_{o x} I_{d}} \\
& \approx 23.16
\end{aligned}
$$

1.1.3 Phase Margin

Phase Margin, $\mathrm{PM} \geq 60^{\circ}$.
Assuming that $F_{u} \gg P_{1}$, we have the phase at F_{u} to be

$$
\begin{aligned}
-90^{\circ}-\tan ^{-1}\left(\frac{F_{u}}{P_{2}}\right) & =-120^{\circ} \\
\Longrightarrow \tan ^{-1}\left(\frac{F_{u}}{P_{2}}\right) & =30^{\circ} \\
\therefore P_{2} & =\sqrt{3} F_{u}=17.32 \mathrm{MHz}
\end{aligned}
$$

The non dominant pole is given by :-

$$
\begin{aligned}
P_{2} & =\frac{g m_{19}}{2 \pi C_{L}} \\
\Longrightarrow g m_{19} & =P_{2} \times 2 \pi C_{L} \\
& =5.44 \times 10^{-4} S
\end{aligned}
$$

1.1.4 Open loop Gain

Open loop small signal low-frequency voltage gain $=100 \mathrm{~dB}=10^{5} . A_{v 1} \times A_{v 2}=10^{5}$

$$
\begin{aligned}
A_{v 2} & =\left(g m_{p}+g m_{n}\right)\left(r_{o p} \| r_{o n}\right) \\
& =\left(g m_{19}+g m_{20}\right)\left(r_{o 19} \| r_{o 20}\right)
\end{aligned}
$$

Assuming $g m_{19}=g m_{20}$

$$
\begin{aligned}
A_{v 2} & =\frac{2 g m_{19}}{\left(\lambda_{p}+\lambda_{n}\right) I_{D 19}} \\
& =40.3 \\
A_{v 1} & =10^{5} / 40.3=2481.62 \\
& \approx 2500
\end{aligned}
$$

First stage gain $\left(A_{v 1}\right)$

$$
\begin{aligned}
A_{v 1} & =g m_{1} R_{\text {out }} \\
R_{\text {out }} & =g m_{10} r o_{10}\left(r o_{8} \| r o_{1}\right) \\
A_{v 1} & =g m_{1} g m_{10} r o_{10}\left(r o_{8} \| r o_{1}\right)
\end{aligned}
$$

$$
\begin{array}{rlrl}
r_{10}=\frac{1}{\lambda_{p} \times I_{\text {bias }} / 2} & r_{1} & =\frac{1}{\lambda_{n} \times I_{\text {bias }} / 2} \\
=250 \mathrm{~K} \Omega & =500 \mathrm{~K} \Omega \\
g m_{10} & =\frac{A_{v 1}}{g m_{1} \times r o_{10}\left(r o_{8} \| r o_{1}\right)} \\
& =2.23 \times 10^{-4} S \\
& =\frac{g m_{10}^{2}}{2 \mu_{p} C_{o x} I_{d}} \\
& \approx 58.36
\end{array}
$$

$$
r_{8}=\frac{1}{\lambda_{p} \times I_{b i a s}}
$$

$$
=125 \mathrm{~K} \Omega
$$

Assuming $g m_{10}=g m_{16}$

$$
\begin{aligned}
\left(\frac{W}{L}\right)_{16,15} & =\frac{g m_{10}^{2}}{2 \mu_{n} C_{o x} I_{d}} \\
& \approx 13.23
\end{aligned}
$$

Assuming current through $M_{7,8,17,18}=40 \mu A$

$$
\begin{aligned}
\left(\frac{W}{L}\right)_{7,8} & =\frac{2 I_{D}}{\mu_{p} C_{o x} V_{D S A T P}^{2}} \\
& \approx 18.82 \\
\left(\frac{W}{L}\right)_{17,18} & =\frac{2 I_{D}}{\mu_{n} C_{o x} V_{D S A T N}^{2}} \\
& \approx 6.67
\end{aligned}
$$

When one of the differentials pairs are turn off. Current ($I_{\text {bias }} / 2$) will flow through either of M_{11}, M_{12}.

$$
\begin{aligned}
\left(\frac{W}{L}\right)_{11,14} & =\frac{2 I_{D}}{\mu_{p} C_{o x} V_{D S A T P}^{2}} \\
& \approx 9.41 \\
\left(\frac{W}{L}\right)_{12,13} & =\frac{2 I_{D}}{\mu_{n} C_{o x} V_{D S A T N}^{2}} \\
& \approx 3.33
\end{aligned}
$$

1.1.5 Iteration 1 Results

Figure 1: Open loop voltage gain in dB

Figure 2: Open loop phase response in degrees

Phase Margin	52.79°
DC gain	107 dB
Unity gain Bandwidth	7.64 MHz

Table 2: Iteration 1 Results

1.2 Iteration 2

To increase Unity gain Bandwidth, we increase $g m_{1}$ by increasing W/L of $M_{1}, M_{2}, M_{3}, M_{4}$.
As F_{u} is directly proportional to $g m$. and $g m$ is proportional to $(W / L)^{0.5}$. We increase W/L by a factor of $(10 / 7.64)^{2}=1.71$
Therefore, we take $\left(\frac{W}{L}\right)_{1,2}=12$ and $\left(\frac{W}{L}\right)_{3,4}=50$
Current phase margin $=52.79^{\circ}$.

$$
\begin{aligned}
90-52.79 & =\tan ^{-1}\left(\frac{F_{u}}{P_{2}}\right) \\
P_{2} & =10.23 \mathrm{MHz}
\end{aligned}
$$

Required $P_{2}=F_{u} \sqrt{3}=17.32 \mathrm{MHz}$. As the non dominant pole is directly proportional to $g m$, we increase W/L of M_{19}, M_{20} by a factor of $(17.32 / 10.23)^{2}=2.87 \approx 3$.
Therefore, $\left(\frac{W}{L}\right)_{19}=127$ and $\left(\frac{W}{L}\right)_{20}=45$

1.2.1 Results

Phase Margin	66.04°
DC gain	109.41 dB
Unity gain Bandwidth	10.31 MHz

Table 3: Final Results

Figure 3: Open loop voltage gain in dB

Figure 4: Open loop phase response in degrees

1.3 Bias Currents and Voltages

Figure 5: Schematic with Bias Voltages and Current

1.4 Transistor sizes

Mosfet Number	W/L	Mosfet Number	W/L
1	12	11	9.41
2	12	12	3.33
3	50	13	3.33
4	50	14	9.41
5	3	15	13.23
6	15	16	13.23
7	18.82	17	6.67
8	18.82	18	6.67
9	58.36	19	127
10	58.36	20	45

Table 4: Size of MOSFETs

2 Reference Current/Voltage Generation

2.1 Circuit

$I_{\text {bias }}=40 \mu A$

$$
I_{b i a s}=\frac{2}{\mu_{n} C_{o x}(W / L)_{N}} \frac{1}{R_{s}^{2}}\left(1-\frac{1}{\sqrt{K}}\right)^{2}
$$

Assuming $(W / L)_{38}=5$ and $K=5$

$$
\begin{aligned}
R_{s}^{2} & =\frac{2}{\mu_{n} C_{o x}(W / L)_{N}} \frac{1}{I_{b i a s}}\left(1-\frac{1}{\sqrt{K}}\right)^{2} \\
R_{s} & =4 K \Omega
\end{aligned}
$$

To keep MOSFETs in saturation,

Bias Voltage	Value
Vb1	0.9
Vb2	0.9
Vb3	0.8
Vb4	1.4

Table 5: Bias Voltages

Figure 6: Reference generation design circuit

2.2 Design Procedure

The transistors M34, M35, M36 (startup), M37, M38 are used to generate $I_{\text {bias }}(40 \mu A)$ as given above.
We took $(W / L)_{34,36,37,38}=5$. With $\mathrm{k}=5$, we have $(W / L)_{35}=25$.
The current is mirrored through M32 and M33 is used to generate $V_{b n}$.
We take $(W / L)_{33,31}=3$ and $(W / L)_{28,30}=15$. The current is again mirrored through M28 with M29 as diode connected we calculate $(W / L)_{29}$.

Similarly mirroring and using the values of bias voltages, we find the W / L ratio of the other transistors.

2.3 Transistor Sizes

Mosfet Number	W/L	Mosfet Number	W/L
21	7.5	30	15
22	2.13	31	3
23	2.13	32	5
24	2.5	33	3
25	1.5	34	5
26	3.7	35	25
27	1.5	36	5
28	15	37	5
29	1.7	38	5

Table 6: Size of MOSFETs

3 DC Simulations

Here is the circuit diagram with currents and voltages shown at operating point.

Figure 7: Node voltages (in V, green) and currents (in $\mu \mathrm{A}$, red)

We see that all transistors except M_{11} and M_{14} are in saturation.

4 AC Simulations

Note : We are ignoring parasitic capacitance as they will be of the order of fF .
We first perform hand calculations to estimate the poles and zeros.
First the dominant pole is given by

$$
\begin{aligned}
P_{1} & =\frac{1}{2 \pi} \frac{1}{\left(R_{1}+R_{2}+G_{m 2} R_{1} R_{2}\right) C_{2}+R_{1} C_{1}+R_{2} C_{3}} \\
& \approx \frac{1}{2 \pi} \frac{1}{G_{m 2} R_{1} R_{2} C_{2}}=\frac{1}{2 \pi} \frac{1}{C_{C 1}\left|A_{v, 2}\right| R_{1}} \\
& =\frac{1}{2 \pi} \frac{1}{C_{C 1}\left|A_{v, 2}\right| g_{m, 10} r_{o, 10} r_{o, 8}} \\
& =\frac{1}{2 \pi} \frac{1}{4 \times 10^{-12} \times 40.3 \times 2.23 \times 10^{-4} \times 250 \times 10^{3} \times 125 \times 10^{3}} \\
& =1.417 \times 10^{2} \mathrm{~Hz}
\end{aligned}
$$

Then we have the non dominant pole, given by

$$
\begin{aligned}
P_{2} & =\frac{1}{2 \pi} \frac{G_{m 2} C_{2}}{C_{1} C_{2}+C_{1} C_{3}+C_{2} C_{3}} \\
& \approx \frac{1}{2 \pi} \frac{G_{m 2}}{C_{3}}=\frac{1}{2 \pi} \frac{g_{m, 19}}{C_{L}}=\frac{1}{2 \pi} \frac{5.44 \times 10^{-4}}{5 \times 10^{-12}} \\
& =1.732 \times 10^{7} \mathrm{~Hz}
\end{aligned}
$$

The zero is given by

$$
\begin{aligned}
Z_{1} & =\frac{1}{2 \pi} \frac{g_{m, 19}}{C_{C 1}}=\frac{1}{2 \pi} \frac{5.44 \times 10^{-4}}{4 \times 10^{-12}} \\
& =2.165 \times 10^{7} \mathrm{~Hz}
\end{aligned}
$$

Now we run simulations and obtain the values:
pole $(1)=-1.04985 \mathrm{e}+09$,
pole $(2)=-5.46599 \mathrm{e}+08$,
pole $(3)=-4.86456 \mathrm{e}+08$,
pole $(4)=-4.75118 \mathrm{e}+08$,
pole $(5)=-4.75118 \mathrm{e}+08$,
pole $(6)=-4.16300 \mathrm{e}+08$,
pole $(7)=-4.16300 \mathrm{e}+08$,
pole $(8)=-1.77794 \mathrm{e}+08$,
pole $(9)=-3.03840 \mathrm{e}+07$,
pole $(10)=-2.17883 \mathrm{e}+02$,
zero(1) $=-7.94640 \mathrm{e}+08$,
zero(2) $=-7.94640 \mathrm{e}+08$,
zero(3) $=-7.43608 \mathrm{e}+08$,
zero(4) $=-5.50337 \mathrm{e}+08$,
zero(5) $=-5.50337 \mathrm{e}+08$,
zero(6) $=-4.97723 \mathrm{e}+08$,
zero(7) $=-1.77794 \mathrm{e}+08$,
zero $(8)=-3.17266 \mathrm{e}+07$
We see that pole(10) is the dominant pole, with magnitude $=2.17883 \times 10^{3} \mathrm{~Hz}$, pole(9) is the first non dominant pole with magnitude $=3.03840 \times 10^{7} \mathrm{~Hz}$, and zero(8) is the dominant zero with magnitude $=3.17266 \times 10^{7} \mathrm{~Hz}$, which are all close to our estimated values above.

(a) Open loop differential voltage gain (in dB), showing poles as ' X ' and zeros as ' O '

(b) Phase of open loop voltage gain as a function of frequency (in ${ }^{\circ}$)

Figure 8: AC Simulations

We get the following values:
DC gain $=109.4118 \mathrm{~dB}$
Unity gain frequency $=1.03 \times 10^{7} \mathrm{~Hz}$
Phase Margin $=65.5^{\circ}$
Roll off at one octave above unity gain frequency $=6.09 \mathrm{~dB}$ /octave

5 Slew Rate Simulation

Figure 9: Slew Rate Simulation, with input as a step response (in green) and output (in red)

We measure the maximum value of the magnitude of the slope of $V_{\text {out }}$ in Fig. 9, and we get $\mathrm{SR}=6.598673 \mathrm{~V} \mathrm{\mu s}^{-1}$.

6 Transient Simulation

Figure 10: Transient Simulation for maximum output voltage swing

We see that the output voltage saturates between 0 and $V_{D D}$ even as the peak-to-peak input amplitude is greater than 1.8 V . Hence the maximum output voltage swing is from 0 to $V_{D D}=1.8 \mathrm{~V}$.

7 Common Mode DC Simulation

The plots showing the non-linearity of the opamp are shown in Fig. 11.

(a) Common Mode DC Sweep from $V_{C M, \min }$ to $V_{C M, \max }$ showing output CM DC voltage as a function of input CM DC voltage

(b) Common Mode DC Sweep from $V_{C M, \min }$ to $V_{C M, \max }$ showing slope vs $V_{C M}$

Figure 11: Common Mode DC Simulations
Fig. 11a shows the output CM DC voltage as a function of input CM DC voltage, and we see
that it is almost linear. To see that it is actually non linear, we have Fig. 11b, which shows the slope of the output voltage, and we see that the slope is not exactly 1 .

We measure the value of the slope at three points as needed:

$V_{C M}$	Slope
100 mV	9.999591×10^{-1}
0.9 V	1.000003
1.6 V	9.999692×10^{-1}

Table 7: Non Linearity of Op Amp
The minimum and maximum of the slope values at the three points above are 0.9999591 V and 1.000003 V respectively.

The minimum and maximum of the slope values over the entire range considered are 0.9995496 V at 1.7 V and 1.000098 V at 1.3 V respectively.

8 Work Contribution

Question Number	Adway Girish	Anjana Singh
1.1	(\checkmark) done by both together	(\checkmark) done by both together
1.2	(\checkmark) done by both together	(\checkmark) done by both together
1.3	(\checkmark) done by both together	(\checkmark) done by both together
1.4	(\checkmark) done by both together	(\checkmark) done by both together
2.1		(\checkmark)
2.2		(\checkmark)
2.3		(\checkmark)
3.1		(\checkmark)
3.2	(\checkmark)	(\checkmark)
3.3	(\checkmark)	(\checkmark)
4.1	(\checkmark)	
4.2	(\checkmark)	
4.3	(\checkmark)	
4.4	(\checkmark)	
5.1		(\checkmark)
5.2		(\checkmark)
6.1	(\checkmark)	
6.2	(\checkmark)	
7.1	(\checkmark)	
7.2	(\checkmark)	
7.3		
7.4		

Table 8: Work Contribution

