
EE338

Digital Signal Processing
Evaluation Component 5

Autumn 2020

Group 18

Adway Girish 180070002
Andrews George Varghese 180070005

Nayan Khemraj Barhate 180070037

Contents

1 Abstract 1

2 Digital Signal Processing principles involved 2
2.1 DFT . 2
2.2 Convolution . 2
2.3 Cepstrum . 3

3 Audio watermarking 4
3.1 Phase Coding . 4
3.2 Echo data hiding . 4

4 Our work 8
4.1 Phase coding . 8

4.1.1 Encoding . 8
4.1.2 Decoding . 10
4.1.3 Auxiliary functions . 11

4.2 Echo data hiding . 12
4.2.1 Encoding . 12
4.2.2 Decoding . 14

4.3 Error analysis and effect of noise . 15
4.3.1 Phase coding . 15
4.3.2 Echo data hiding . 15

5 Conclusion 17

1 Abstract

Here is our original abstract:

“Watermarking is the process of embedding information into a signal. In particular,
audio watermarking is the process of adding a distinctive sound pattern, impercep-
tible to the human ear, to an audio signal to allow a computer to identify it. This
is done in such a way that it is difficult to remove. If the audio is copied, so is
the watermark. This helps to identify files that have been illegally reproduced, and
hence, watermarks are becoming widely popular in enabling copyright protection
and ownership verification.

But why is this important? As we move towards a ‘self-reliant’ and ‘digital’ India, a
huge quantity of original content is being produced and it is becoming increasingly
important to ensure the protection of intellectual property rights. Audio water-
marking can help in this regard. Also, the presence of a watermark can be used to
check for the authenticity of audio messages, which is a very valuable tool, especially
in this age of deep fakes.

We plan to do so by one of spread spectrum, least significant bit coding, phase
coding and echo hiding. The aim will be to implement the watermarking while
ensuring that

1. The watermark cannot be easily removed.

2. The quality of the audio signal is not compromised.”

We have followed this without any deviations. We have implemented the process of audio
watermarking using two methods - Phase coding and Echo data hiding. The organisation of
this report is as follows: §2 introduces the relevant concepts from the field of Digital Signal
Processing that are used in the implementation. §3 briefly explains the various steps involved
in the process of watermarking are, for both the methods. §4 shows our investigations on this
topic, including snippets of our code and the results obtained. §5 summarises and provides a
comparison of the two methods used.

1

2 Digital Signal Processing principles involved

First, here are some of the concepts from Digital Signal Processing will be applied to implement
our watermarking process (explained in §3.1 and §3.2).

2.1 DFT

The Discrete Fourier Transform converts a real discrete-time sequence x[n] of length N into a
complex discrete-frequency sequence X[k] of the same length by

X[k] =
N−1∑
n=0

x[n] e−j
2π
N
kn

The DFT is a way of representing a time-domain signal in the frequency-domain. It is imple-
mented using numerical algorithms such as the Fast Fourier Transform (FFT), which greatly
increases the efficiency of computation. Since X[k] is a complex quantity, we can talk of its
magnitude and phase separately.

2.2 Convolution

The convolution is a mathematical operation on two functions to produce a third function which
represents the “spreading” of one function over another. Given two discrete-time signals x[n]
and y[n] of length N , we have the convolution z[n] given by

z[n] = x[n] ∗ y[n] =
N−1∑
l=0

x̂[l] ŷ[n− l], for 0 ≤ n ≤ N − 1

where x̂ and ŷ are infinite-length periodic extensions of x and y respectively (this is only to
account for cases when n− l < 0 or n− l > N − 1 since y is not defined there). Fig. 1 shows
this operation in action.

Figure 1: Visualisation of convolution as a measure of “spreading”, taken from here

2

https://en.wikipedia.org/wiki/Convolution##Circular_discrete_convolution

When we say that a signal x is “filtered” with another signal y, what we mean is that these
signals are convolved with each other to obtain a new signal z. Interestingly, we have a simpler
relation in the frequency domain when two signals are convolved:

Z[k] =
N−1∑
n=0

z[n] e−j
2π
N
kn =

N−1∑
n=0

(
N−1∑
l=0

x̂[l] ŷ[n− l] e−j
2π
N
kn

)

=
N−1∑
n=0

(
N−1∑
l=0

x̂[l] ŷ[n− l] e−j
2π
N
k(l+n−l)

)

=
N−1∑
n=0

(
N−1∑
l=0

x̂[l] ŷ[n− l] e−j
2π
N
k(l+n−l)

)
put m = n− l

=
N−1−l∑
m=−l

(
N−1∑
l=0

x̂[l] ŷ[m] e−j
2π
N
k(l+m)

)

=
N−1∑
l=0

x̂[l] e−j
2π
N
kl

(
N−1−l∑
m=−l

ŷ[m] e−j
2π
N
km

)
=

N−1∑
l=0

x̂[l] e−j
2π
N
kl Y [k]

=

(
N−1∑
l=0

x̂[l] e−j
2π
N
kl

)
Y [k] = X[k]Y [k]

Hence we have a linear transformation which allows us to convert the rather complicated con-
volution in one domain into the much simpler multiplication operation in another domain.

2.3 Cepstrum

The cepstrum is a signal processing tool used widely, particularly when dealing with audio
signals. It is defined as the signal whose Fourier transform is the logarithm of the Fourier
transform of the original signal, i.e. the cepstrum of a signal x[n] with DFT X[k] is given by

Cx[n] = F−1{log |X[k]|}

The cepstrum is useful when dealing with the deconvolution of signals. When two signals
x[n] and y[n] are convolved to obtain z[n], i.e z[n] = x[n] ∗ y[n], their DFTs are related as
Z[k] = X[k]Y [k]. Then the cepstrum of z[n] is given by

Cz[n] = F−1{log |Z[k]|} = F−1{log |X[k]Y [k]|}
= F−1{log |X[k]|+ log |Y [k]|} = F−1{log |X[k]|}+ F−1{log |Y [k]|}
= Cx[n] + Cy[n]

Hence we see that a cepstrum gives us a homomorphism from a system with convolution as the
operation to one with addition, which is considerably easier to work with.

3

3 Audio watermarking

3.1 Phase Coding

In this method, the data to be stored (call it the message signal) is encoded in the spectral phase
of the cover song (call it the base signal). This works on the principle that in the frequency
domain, the average human ear is insensitive to small spectral phase changes (we keep the
spectral magnitudes constant). The ear is instead most sensitive to the relative difference in
phase between consecutive segments of the cover song.

In this algorithm, the message is converted to bits, and bit ‘0’ is assigned a phase of φ0 = π
2

and bit ‘1’ a phase of −φ0 = −π
2
. We use these phase values as we want the phases to be as

far apart from each other as possible, so as to make the encoding more robust to noise. The
process of encoding these phases (representing bits) is briefly described below. Illustrations of
the same can be found in Fig. 2.

1. The base signal is first divided into segments of required size.
2. We obtain the DFT of each segment, and preserve the amplitude spectrum of each. We

work on the phase spectra.
3. We calculate the phase difference between adjacent segments, and save this.
4. We store the phases (representing the bits of the message) in the phase spectrum of

the first segment (while maintaining hermitian symmetry), and then construct the phase
spectra of the following segments using the phase differences and the first segment.

5. Finally, we concatenate the inverse DFTs of each segment and obtain the modified signal.

In order to retrieve the message when using phase encoding, the receiver needs to know how
long the original message was, the length of each segment and what kind of message it was (for
example, a .txt file). Given these, the decoding process is:

1. Obtain the first segment of the modified signal.
2. Calculate the DFT of this first segment, and obtain its phase spectrum.
3. Wherever the phase is π

2
, the corresponding data bit is ‘0’, and is ‘1’ wherever the phase

is −π
2

We thus obtain the bit stream corresponding to the original hidden message. Given the file
type of the original message, we now obtain the final decoded message.

3.2 Echo data hiding

The basic idea behind echo hiding is to artificially introduce an echo for each bit of data to be
embedded. By controlling parameters such as the amplitude of the echo and the delay of the
echoes representing the “one” and “zero” bits, we can ensure the inaudibility of the embedded
signal as well as the robustness of the hiding.

The details of the implementation vary greatly, since there are different ways of introducing
the echo. The most straightforward is the single echo kernel method, which only involves one
echo apart from the original signal. We can obtain a more natural sound by using a time-spread
echo kernel, which better represents the natural echoing due to reflections in a room. Here we
will use the former method to simply illustrate the process.

4

Figure 2: Illustration of the steps involved in phase encoding (Figures taken from [1])

5

Figure 3: Introducing an echo using a single echo kernel. We use different δb to differentiate
between “zero” and “one” bits. (Figure taken from [1])

We ensure inaudibility by choosing delays small enough that the original sound and the echo
blend together as one (this is helped by the average human ear being unable to resolve sounds
that are less than a microsecond apart). Giving the echo an amplitude considerably smaller
than the original also helps mask it. The process of encoding can be summarised as:

1. First the entire signal is divided into segments of some fixed size to represent each bit.
2. Each segment is filtered using the appropriate kernel (“zero” or “one”, depending on the

bit that segment is to carry). The implementation for this is carried out in a more efficient
manner using a mixer.

3. The segments are put together to obtain the watermarked signal with the encoding.

It is also important to be able to extract the embedded information from the encoded signal.
The philosophy here is to detect the spacing between the echoes of each segment, since that is
how we embedded the bits into the signal. We convolve a kernel with the signal to generate
the echo which contains the hidden data. To decode the hidden message, we need to look at
the echo in each segment and classify the kernel used to generate that echo. The cesptrum
turns out to be very handy for this. The cepstrum of the encoded signal will be the sum of
the cepstrum of the kernel and that of the original signal. While non-linear, the cepstrum is
still homomorphic, so the value of the cepstrum of any signal at a certain time is likely to be
greater than the value at another time if the signal itself also follows the same order. Hence,
comparing the values of the cepstra at the positions of the impulses in the “zero” and “one”
kernels, we can make an estimate for which kernel was used to generate the echo, and hence
predict the encoded bit. To decode the encoded signal and obtain the hidden bits:

1. The length of the segment needed to represent each bit is known and this is used to
identify the segments representing each bit.

2. The cesptrum of each segment is found, and the magnitudes of the real cepstrum are
compared at the delays corresponding to the “zero” bit and the “one” bit.

3. The one with the higher magnitude is assigned as the bit value corresponding to that
segment.

Thus we can extract the entire sequence of bits embedded into the original signal. A summary
of the encoding process is shown in Fig. 4

6

(a) Divide the original signal into segments for each bit

(b) “One” signal and “zero” signal generated by filtering original signal with “One” and “Zero” kernels
respectively

(c) “One” mixer and “Zero” mixer with smoothed transitions

(d) Obtaining the final encoded signal by combining the signals with the respective mixers

Figure 4: The process of encoding using echo hiding (Figures taken from [1])

7

4 Our work

We have carried out the process of watermarking on the audio file given in this in drive1 using
two methods: echo data hiding and phase coding. We have analysed the accuracy of the
methods using the Bit Error Rate and also looked at the deterioration in performance in the
presence of noise.

4.1 Phase coding

Here is the detailed algorithm for the method given in §3.1, along with code snippets of the
implementation in MATLAB to make understanding it easier.

4.1.1 Encoding

1. Store the base song signal onto which encoding is performed in the variable signal, and
message text in the variable text

2. Initialise the following variables (getBits gets the bit sequence equivalent to the message
in text, as defined in §4.1.3)

base = signal(:,1);

msg = getBits(text);

I = length(base);

m = length(msg); % Length of the bit sequence to be hidden

3. Obtain the length of each segment and the number of segments (we have used powers of
2 for lengths of the segments, as taking FFT of such segments is the most efficient, and
this provided better results as far as audio quality is concerned)

L = min(2^nextpow2(2*m), I)% length of each segment

if L == 2*m

L = L + 2;

if L >= I

disp(['Text message too long - find a longer base signal']);

out = 0;

return;

end

end

halfL = floor(L/2);

N = floor(I/L);% Number of points per segment

4. Segment the signal, and obtain the DFTs of each segment. Calculate the phase and
amplitude spectra for each segment

1The complete code and audio files used for all parts can be found here - https://drive.google.com/

drive/folders/1BvoXn1Ue_pdNI7mw48RtNcORmlJTw1gd?usp=sharing

8

https://drive.google.com/drive/folders/1BvoXn1Ue_pdNI7mw48RtNcORmlJTw1gd?usp=sharing
https://drive.google.com/drive/folders/1BvoXn1Ue_pdNI7mw48RtNcORmlJTw1gd?usp=sharing

% Segment the signal

s = reshape(base(1:N*L,1), L, N);

% obtain L-point DFT of each signal, and the phase and amplitudes

w = fft(s);

Phi = angle(w); % Phases - N columns, each of L rows

A = abs(w); % Amplitudes

5. Obtain the phase differences between consecutive segments

% Calculating phase differences between adjacent segments

DeltaPhi = zeros(L,N);

for i=2:N

DeltaPhi(:,i)=Phi(:,i)-Phi(:,i-1);

end

6. Convert the message data bit sequence into phases

% Convert the data bits into phase {'0' : pi/2, '1' : -pi/2}

PhiData = zeros(1, m);

phi0 = pi/2;

for i=1:m

if msg(i) == '0'

PhiData(i) =phi0;

else

PhiData(i) = -phi0;

end

end

7. Store the message in the phase of the first segment

Phi_new = zeros(size(DeltaPhi));

% Save message in column 1 of the phase matrix

% remember to maintain hermitian symmetry

Phi_new(:,1) = Phi(:,1);

Phi_new(halfL-m+1:halfL,1) = PhiData;

Phi_new(halfL+1+1:halfL+1+m,1) = -flip(PhiData); % Hermitian symmetry

8. Obtain the phases for the remaining segments (by maintaining the phase differences be-
tween consecutive segments)

% Constructing phase matrix using phase differences DeltaPhi

for i=2:N

Phi_new(:,i) = Phi_new(:,i-1) + DeltaPhi(:,i);

end

9

9. Finally, take the inverse DFT of each segment, and concatenate the segments in time.

% Reconstructing the sound signal by taking IFFT

z = real(ifft(A .* exp(1i*Phi_new)));

out = reshape(z, N*L, 1); % concatenating

if N*L + 1 <= I

% Adding rest of signal - I/L may not be an integer

out = [out; base(N*L+1:I)];

end

4.1.2 Decoding

Here is the detailed decoding algorithm, along with code snippets of the implementation in
MATLAB to make understanding it easier:

1. Assume the encoded signal is stored in the variable modifiedSignal and the length of the
message signal is in variable L msg.

2. Initialise the various constants

% Length of bit sequence (assuming 8bits per character)

m_decode = 8*L_msg;

I_decode = length(modifiedSignal);

% length of each segment

L_decode = min(2^nextpow2(2*m_decode), I_decode);

if L_decode == 2*m_decode

L_decode = L_decode + 2;

end

halfL_decode = floor(L_decode/2);

3. Obtain the first segment of modifiedSignal and obtain its phase spectrum

x = modifiedSignal(1:L_decode,1); % First segment

Phi_decode = angle(fft(x)); % Phase angles of first segment

4. Retrieve the data stored in the phase of the first segment.

% Retrieving data back from phases stored in first segment

data_decode = char(zeros(1,m_decode));

for k=1:m_decode

if Phi_decode(halfL_decode - m_decode + k)>=0

data_decode(k)='0';

else

data_decode(k)='1';

end

end

10

5. Process the data obtained and convert it into characters to be printed

bin_decode = reshape(data_decode(1:m_decode), 8, m_decode/8)';

out_decode = char(bin2dec(bin_decode))';

6. Obtain final error rates (BER calculates the bit error rate, as defined in §4.1.3)

ratio = BER(out_decode, text); % Bit error rate

disp(['******** RESULTS ********']);

fprintf('Original Text: %s\n', text);

fprintf('Decoded Text: %s\n', out_decode);

fprintf('BER : %d\n', ratio);

4.1.3 Auxiliary functions

The getBits function takes a string (each element is of data type char) and returns the bit
sequence corresponding to that string.

function bit_seq = getBits(text)

% we are assuming that we store txt - char data type

matrix = dec2bin(uint8(text),8);

bit_seq = reshape(matrix', 1, 8*length(text));

end

The BER function calculates the bit error rate between 2 strings - a source string and a target
string.

function out = BER(a, b)

%BER Bit Error Rate

a_bits = getBits(a);

b_bits = getBits(b);

len_a = length(a_bits);

len_b = length(b_bits);

len = min(len_a, len_b);

ber = 0;

for i=1:len

ber = ber + (a_bits(i) ~= b_bits(i));

end

ber = ber + abs(len_b - len_a);

out = 100*(ber/len);

end

11

4.2 Echo data hiding

Here is the detailed algorithm for the method given in §3.2, along with code snippets of the
implementation in MATLAB:

4.2.1 Encoding

1. Store the original signal onto which data is to be embedded in signal and the message
text in text and initialise these related variables- msg stores the text as bits.

matrix = dec2bin(uint8(text),8);

msg = reshape(matrix', 1, 8*length(text)); % Converts text into bits

I = length(signal);

m = length(msg); % Length of the bit sequence to be hidden

2. Set these as the parameters for echo hiding.

delay0 = 150; % Delay rate for bit0

delay1 = 200; % Delay rate for bit1

amp = 0.5; % Echo amplitude

L = 8*1024; % Length of segment to encode each bit

nframe = floor(I/L);

N = nframe - mod(nframe,8); % Number of frames needed for all bits

3. Now we define the echo kernels for the “zero” and “one” bits, and generate the “zero”
and “one” signals by filtering the original signal with the respective kernels - these are
just the original signals with a delay and scaled by amp. Check Figs. 4b and 5a.

ker0 = [zeros(delay0, 1); 1]*amp; % "zero" kernel

ker1 = [zeros(delay1, 1); 1]*amp; % "one" kernel

echo_zero = filter(ker0, 1, signal); % "zero" signal

echo_one = filter(ker1, 1, signal); % "one" signal

4. Generate the mixer signal of length N*L which is zero for the intervals when msg is zero
and one when msg is one, smoothen it using a Hanning window, and normalize it. Check
Figs. 4c and 5b.

encbit = str2num(reshape(bits, N, 1))';

% Creates a matrix of all the bits

m_sig = reshape(ones(L,1)*encbit, N*L, 1);

% Converts the matrix into one vector - a rudimentary mixer signal

K = 256; % length of Hanning window

c = conv(m_sig, hanning(K)); % Windowing to smoothen

mix = c(K/2+1:end-K/2+1) / max(abs(c)); % Normalization - final mixer

12

5. Now all that’s left is to combine the mixer with the kernel to get the signal with the
encoding.

encoded = signal(1:N*L, :) + echo_zero(1:N*L, :) .* abs(mix-1) ...

+ echo_one(1:N*L, :) .* mix; % Including the bits

encoded = [encoded; signal(N*L+1:I, :)]; % Rest of the signal

(a) The topmost one is a segment of the original signal, the middle one is the same segment of the
“zero” signal, and the bottom one is the same segment of the “one” signal (compare with Fig. 4b).
Observe the different delays for the signals generated using the kernels.

(b) The upper one is the “one” mixer for some text and the lower one is the “zero” mixer for the same
text to be hidden (compare with Fig. 4c).

Figure 5: Examples of mixer and “zero” and “one” signals from MATLAB simulations

13

4.2.2 Decoding

1. Assume the encoded signal is stored in the variable encoded and the length of each segment
is L (just as for encoding).

2. Initialise some variables

N = floor(length(encoded)/L); % Number of segments (and hence bits)

segs = reshape(encoded(1:N*L,1), L, N); % Dividing signal into segments

data = char.empty(N, 0); % To store decoded message

3. Now for each segment, calculate the real spectrum and compare magnitudes at the delay
values of the “zero” and “one” kernels. Assign one to this bit if the value is greater for
the “one” kernel, and vice-versa.

for k=1:N

rceps = ifft(log(abs(fft(segs(:,k))))); % Real cepstrum

if (rceps(d0+1) >= rceps(d1+1)) % Assign 0 if delay of "zero" kernel

data(k) = '0'; % has higher cepstrum magnitude

else % Assign 1 if delay of "one" kernel

data(k) = '1'; % has higher cepstrum magnitude

end

end

4. Finally, convert the binary sequence into text.

m = floor(N/8);

bin = reshape(data(1:8*m), 8, m)'; % Message in binary

msg = char(bin2dec(bin))'; % Converting back to text

14

4.3 Error analysis and effect of noise

To test the quality of encoding and decoding, we have used a parameter called the Bit Error
Rate (BER) defined as

BER =
number of bits incorrectly estimated

total number of bits estimated

We also add Additive White Gaussian Noise of different Signal-to-Noise ratios to observe the
performance of this algorithm under adverse conditions.

4.3.1 Phase coding

In the algorithm mentioned in §3.1, we used a phase of φ0 = ±π
2

to encode bits ‘0’ and ‘1’.
This was to ensure maximum separation between the two bits, so as to make the encoding
more robust to noise. Here we tabulate the bit error rates at varying levels of AWGN noise, for
different values of φ0.

φ0 SNR (in dB) BER (in %)
π/10 - 0
π/10 80 1.0
π/10 60 3.3
π/10 40 25.9
π/5 - 0
π/5 80 0.46
π/5 60 2.5
π/5 40 15.9
π/2 - 0
π/2 80 0.21
π/2 70 1.1
π/2 60 1.9
π/2 40 9.6

Table 1: Table showing data obtained from MATLAB simulations

4.3.2 Echo data hiding

Note that in the code for echo data hiding in §4.2, we took the length of the segment of the
audio needed to code one bit, L = 8*1024. Taking a smaller value of L lets us encode more
bits of data into the audio signal, but comes at the cost of increased errors while decoding.
The value we used was arrived at after comparing the performances at different lengths under
different noise conditions.

15

L SNR (in dB) BER (in %)
1024 - 0.78125
1024 80 9.7222

2*1024 - 0
2*1024 80 3.3333
2*1024 60 4.1667
4*1024 - 0
4*1024 80 2.1875
4*1024 60 3.75
4*1024 40 6.5625
8*1024 - 0
8*1024 80 0
8*1024 60 0.625
8*1024 40 1.875
8*1024 30 5.625

Table 2: Table showing data obtained from MATLAB simulations

Tables 1 and 2 show the results obtained. A BER greater than 10% makes the original data
practically unrecognizable, and BER less than 2% usually gives a fairly decent decoding. These
results are for one particularly text message encoded in one particular audio file only, but it
was ensured by comparing with other files that this file was not an outlier in terms of BER.

16

5 Conclusion

We have seen two methods of hiding data in an audio file. Phase coding codes the entire signal
into the fist segment, while echo data hiding requires the entire signal to transmit all the bits.
Phase coding makes use of the phase to hide the data while echo data hiding uses the entire
time domain sequence. Since variations in phase are difficult to detect audibly, it is possible
to create larger differences with respect to the original while ensuring inaudibility. Hence we
can encode a larger number of bits using phase coding as compared to echo hiding, where we
require a large segment of the original signal to store each bit since the variation between the
kernels used to represent the bits is only a very small delay.

We have only looked at an elementary implementation of watermarking. In practice there
are many improvements made. The error rates can be reduced by using error correcting codes
to detect and rectify errors in a few bits.

While these methods of data hiding have innumerable applications, here we consider their
use in audio watermarking. These techniques can be used to encode some key that cannot
be easily reproduced into some audio file such as an original recording of a song while it is
produced. Since the encoding is embedded within the signal, it cannot be removed by any kind
of filtering. To detect plagiarised copies of this original, the suspected audio file is checked
for the presence of encoding and subjected to decoding. If the file has the original audio in
a quality such that it is usable, the encoding can also be retrieved. This allows us to check
for illegal copies. Further, a unique ID for the buyer can be encoded in the audio, and any
suspected plagiarised copies can be decoded to obtain this information, and hence identify the
guilty party.

17

References

[1] W. Bender, D. Gruhl, N. Morimoto, and A. Lu. Techniques for data hiding. IBM Systems
Journal, 35(3.4):313–336, 1996.

[2] L. Boney, A. H. Tewfik, and K. N. Hamdy. Digital watermarks for audio signals. In
Proceedings of the Third IEEE International Conference on Multimedia Computing and
Systems, pages 473–480, 1996.

[3] Darko Kirovski and Henrique Malvar. Spread-spectrum watermarking of audio. Signal
Processing, IEEE Transactions on, 51:1020 – 1033, 05 2003.

[4] Ryouichi Nishimura, Yôiti Suzuki, and B.-S Ko. Advanced Audio Watermarking Based on
Echo Hiding: Time-Spread Echo Hiding, pages 123–151. 01 2007.

[5] Kadir Tekeli. Audio steganography algorithms.
https://github.com/ktekeli/audio-steganography-algorithms.

[6] Lihao Yang Tianruo Sun and Zimo Cheng. Mp3 audio watermarking.
http://www2.ece.rochester.edu/~zduan/teaching/ece472/projects/2020/

TianruoSun_LihaoYang_ZimoCheng_MP3Watermarking_ProjectReport.pdf.

18

https://github.com/ktekeli/audio-steganography-algorithms
http://www2.ece.rochester.edu/~zduan/teaching/ece472/projects/2020/TianruoSun_LihaoYang_ZimoCheng_MP3Watermarking_ProjectReport.pdf
http://www2.ece.rochester.edu/~zduan/teaching/ece472/projects/2020/TianruoSun_LihaoYang_ZimoCheng_MP3Watermarking_ProjectReport.pdf

	Abstract
	Digital Signal Processing principles involved
	DFT
	Convolution
	Cepstrum

	Audio watermarking
	Phase Coding
	Echo data hiding

	Our work
	Phase coding
	Encoding
	Decoding
	Auxiliary functions

	Echo data hiding
	Encoding
	Decoding

	Error analysis and effect of noise
	Phase coding
	Echo data hiding

	Conclusion

