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1 Problem Statement

Given a data vector x ∈ RN and a known measurement matrix A ∈ RM×N , the observation vector
y ∈ RM is obtained as y = Ax + n. As in [1], we are assuming prior information on the sparsity
pattern of x (and not on the values). Informally, each entry of x has a specific probability of being
non-zero that is known at the decoder.

We assume that the elements of A are drawn from a N (0, 1
M
) distribution and that the elements

of n are drawn from a N (0, σ2) distribution. The ith entry of x is given by xi = gisi where gi ∈ R
is drawn according to N (0, 1) and si takes a binary value in {0, 1}. The probability of si being 1
is given by pi (called the support probability) and we assume that si are independent. The task of
the decoder is to estimate y from x when p is known to it.

The N elements of x are divided into G groups. For n ∈ {1, . . . , G}, the support probabilities
of all the elements in this group n (which constitute a fraction fn of the elements of x) are equal
to p′n. The number of coefficients in group n is Nn = fnN .

The paper [1] proposes modifications to Basis Pursuit (BP) [2], Least Absolute Shrinkage and
Selection Operator (LASSO) [3] and Orthogonal Matching Pursuit (OMP) [4] to solve this problem.
We use their algorithm to obtain similar results and also propose slight modifications to their
algorithms that produce better results. The performance metric that we use is prec, the fraction of
terms that are correctly identified to belong to the support of x, given by

prec =
1

S

S∑
i=1

∣∣∣Ii ∩ Îi

∣∣∣
|Ii|

,

where S is the number of runs per simulation, Ii is the true support on the ith run and Îi is the
support estimate on the ith run.
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2 Method

1. To implement BP, we first reformulate it as a linear program (LP), then use MATLAB’s
inbuilt linear solver to obtain the solution. This reformulation is done as follows:

argminx ||x||1 subject to y = Ax

⇐⇒ argmint 1
⊺t subject to |xi| ≤ ti ∀i and y = Ax

⇐⇒ argmint [0 1]⊺
[
x
t

]
subject to y = Ax, [I − I]⊺

[
x
t

]
≤ 0 and [−I − I]⊺

[
x
t

]
≤ 0,

which is the required LP formulation, with the notation that v ≤ 0 for a vector v implies that
vi ≤ 0 ∀i.

2. To implement LASSO, we use the Iterative Shrinkage and Thresholding Algorithm (ISTA) [5]
just as discussed in class.

3. For OMP, we assume that the number of non-zero elements in x, K is known. (It is possible
to perform the same algorithm with comparable performance even without this information,
by instead having an estimate of the number of non-zero elements as the expectation over the
support probabilities, K =

∑G
i=1 p

′
nNn.) The iterative procedure in OMP is repeated only K

times, i.e. till the reconstructed vector is exactly K-sparse, unlike the version covered in class,
where the exit condition is that the norm of the residual be lesser than some threshold.

3 Experiments and Results

We compute and plot the variation of the fraction of recovered support entries, prec as a function
of M . The plots obtained are shown in Figs. 1, 2, 3. The aim is to compare the Standard BP,
LASSO and OMP algorithms (represented by + in the plots) with the variants that make use of
prior information. For BP and LASSO, the paper [1] proposes a method where we consider a factor
of − log pi at xi to account for the prior information (shown by ◦ in the plots). In addition, we
propose a factor of 1

pi
(shown by ∗) and 1

pi
− 1 (shown by ▽). For OMP, the paper proposes (with

justification) an additive factor proportional to log pi
1−pi

(shown by +), called Logit-Weighted OMP

(LW-OMP). In each case, we average over 100 iterations.
We use the same method of generating the input signal as in the paper. We partition the

N = 240 entries of x into four different groups as shown in Table 1. This is done such that the
expected number of non-zero entries in each group is 4, i.e. p′nNn = 4, and hence the total expected
number of non-zero entries, K = 16.

N1 N2 N3 N4

Simulation 1 60 60 60 60
Simulation 2 120 80 20 20
Simulation 3 204 12 12 12
Simulation 4 210 20 5 5

Table 1: The partition of N into different groups

Simulation 1 has an equal number in each group, which means that p′1 = · · · = p′4 = 4
60

– this
is shown in red in the plots. Simulation 4, meanwhile, is at the other extreme with 210 out of
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the 240 entries having a tiny support probability p′1 = 4
210

, while 5 + 5 = 10 entries have a large
support probability of p′3 = p′4 = 4

5
. This is shown in cyan in the plots. We also have two other

sets, Simulation 2 (blue) and Simulation 3 (green), which offers a smooth transition between the
extremes. The expectation is that among the four simulations, we get the best result for Simulation
4 and the worst for Simulation 1, since Simulation 4 has the heaviest influence of support probability.

Figure 1: The variants of BP

Figure 2: The variants of LASSO
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Figure 3: The variants of OMP

4 Conclusions

From the plots obtained, we make the following conclusions:

1. As expected, the performance of Simulation 1 is the worst and Simulation 4 is the best.

2. The improvement over the standard is very clear, with the percentage recovery going up from
around 0.2 to over 0.7 in some cases, thus making the importance of prior information clear.

3. Unexpectedly, our chosen weights of 1
pi

and 1
pi
− 1 do better than the proposed − log pi. Our

conjecture is that this is due to the larger penalties that 1
pi

and 1
pi
− 1 have over − log pi (as

can be seen in Fig. 4), thereby giving those entries a higher weightage.

4. Among these two, 1
pi
−1 does slightly better, possibly because of the zero penalty when pi = 1.

Figure 4: Plot showing the different possible weight functions
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