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Abstract

For a simple binary hypothesis testing setup, Hoeffding’s bound gives the optimal error
exponent of one type of error when the other decays exponentially fast, with an exponent
smaller than the KL divergence between the null and alternative hypothesis distributions. We
consider an extension of this result to a composite hypothesis testing setup. In particular, we
study an axiomatic approach based on a “universal distribution”, introduced by Tomamichel
and Hayashi. By looking at the proof restricted to a specific setting, we try to understand the
use of the axiomatic approach, and in particular, the universal distributions.

1 Preliminaries

For completeness, we first summarize the notation used and make some relevant definitions.

1.1 Probabilities and types

Let X and Y be two finite sets. For any pair of random variables (X,Y ) on X × Y, with the joint
probability mass function (pmf) PXY , which we denote as (X,Y ) ∼ PXY , we let PX and PY be the
marginal pmfs of X and Y respectively. We refer to the n-fold product distribution P × · · · ×P on
X n by Pn. We use P(X ) to denote the set of probability distributions on X .

The type [1] of a sequence xn ∈ X n is the distribution P ∈ P(X ), given by P (a) = 1
n

∑n
i=1 1{xi =

a} for all a ∈ X , also called the empirical distribution. The set of all types of sequences in X n is
denoted by Tn(X ). Even though the number of sequences in X n is |X |n, which grows exponentially
in n, there are at most (n+1)|X | types, which is polynomial in n. If a distribution only depends on
the type of the sequence, it is called a permutation-invariant distribution, since the type remains
unchanged under permutations. The set of all permutation-invariant distributions on X is denoted
by Psym(X ). For any set of distributions Q, we use Qsym to refer to the set of permutation-invariant
distributions in Q.
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1.2 Rényi information measures

Given two distributions P and Q on X , we define the Rényi divergence of order α, α ∈ (0, 1)∪(1,∞)
as

Dα(P ||Q) ≜
1

α− 1
log

∑
x∈X :P (x)>0

P (x)αQ(x)1−α.

When α = 1, we define D1(P ||Q) to be the limit, which happens to be the KL divergence,

D1(P ||Q) ≜ lim
α→1

Dα(P ||Q) =
∑

x∈X :P (x)>0

P (x) log
P (x)

Q(x)
= DKL(P ||Q).

The classical mutual information between random variablesX and Y is related to the KL divergence
through the following equivalent formulations:

I(X;Y ) = DKL(PXY ||PXPY )

= min
QY ∈P(Y)

DKL(PXY ||PXQY )

= min
QX∈P(X ),QY ∈P(Y)

DKL(PXY ||QXQY ).

It is also possible to similarly define a Rényi mutual information in terms of the Rényi divergence,
but the above expressions are, in general, not equal for α ̸= 1. This leads to different defintions
of Rényi mutual information, such as that by Arimoto [2] and Sibson [3]. We are interested in
Sibson’s definition, given by

ISα (X;Y ) = min
QY ∈P(Y)

Dα(PXY ||PX ×QY ). (1)

2 Simple and Composite Hypothesis Testing, Error Exponents

Consider a simple binary hypothesis testing setup. We have two probability distributions P and Q
on a finite set X , and a random variable X is drawn from either P or Q. Given n independently and
identically distributed (i.i.d.) samples of X as Xn = (X1, . . . , Xn), the task is to identify whether
Xn is drawn from Pn or Qn. This can be stated as follows:

null hypothesis : Xn ∼ Pn,

alternative hypothesis : Xn ∼ Qn.

We make the decision through a test function T : X n → {0, 1}, where T (Xn) = 1 (0) means that
we accept (reject) the null hypothesis, or equivalently, that we decide that Xn is drawn according
to Pn (Qn). Two kinds of errors are possible: the type-I error, given by pn = Pn{T (Xn) = 0} and
the type-II error, given by qn = Qn{T (Xn) = 1}. These are the probabilities of deciding incorrectly
when Xn is drawn from Pn and Qn respectively. Clearly, both cannot be made arbitrarily small
simultaneously.

This trade-off is captured through the Chernoff-Stein lemma [4]: If we require that pn ≤ ϵ for
some constant ϵ ∈ (0, 1), then the optimal test has a type-II error that decays exponentially with n
as qn = exp

(
− nDKL(P ||Q) + o(n)

)
, Conversely, this also means that if qn ≤ exp(−nR) for some

R > DKL(P ||Q), then pn cannot be upper bounded by any constant strictly smaller than 1. On
the other hand, if qn ≤ exp(−nR) for some R ∈ (0, DKL(P ||Q)), then we have Hoeffding’s bound
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[5], which says that the optimal type-I error is not only upper bounded by a constant, but also
decays to zero exponentially with n, as

pn = exp

(
− n sup

0<α<1

1− α

α

(
Dα(P ||Q)−R

)
+ o(n)

)
.

These results can also be extended to the case where the alternative hypothesis is composite,
i.e., Xn ∼ Qn, where Qn belongs to some set of distributions Qn (note that we no longer require
Qn to have a product structure). This composite hypothesis problem is then stated as follows:

null hypothesis : Xn ∼ Pn,

alternative hypothesis : Xn ∼ Qn, for some Qn ∈ Qn.

If Q1 = {Q} and Qn = Q1 × · · · × Q1 n times, then this reduces to the simple hypothesis testing
problem above. For composite hypothesis testing, the type-I error remains unchanged, but the
type-II error is the maximum over all distributions in Qn, i.e., qn = maxQn∈Qn Qn{T (Xn) = 1}.

Tomamichel and Hayashi [6] show that, under some conditions on Qn, the trade-off between
the optimal type-I and type-II errors is given by the same expression as Hoeffding’s bound, except
with Dα(P ||Q) replaced with

Dα(P || Q1) ≜ min
Q∈Q1

Dα(P ||Q). (2)

The required conditions on Qn are:

(Axiom 1) The set Q1 is compact convex, and the minimizer in (2) is unique and lies in the relative
interior of Q1.

(Axiom 2) The set Qn contains the element Qn for every Q ∈ Q1.

(Axiom 3) For all α > 0 and n ∈ N, we have Dα(P
n || Qn) ≥ nDα(P || Q).

(Axiom 4) There exists a sequence of pmfs {Un}n∈N with Un ∈ Psym(X n) and a polynomial v(n)
such that, for all n ∈ N and Qn ∈ Qsym

n , we have

Qn(x
n) ≤ v(n)Un(x

n), ∀ xn ∈ X n, and

Dα(P
n ||Un) ≥ Dα(P

n || Qn).

Further, Qn is closed under symmetrization.

Axioms 2 and 3 together imply that the inequality in Axiom 3 actually holds with equality.
Axiom 1 can be relaxed to require only a convex re-parametrization on an interval (a, b) containing
1, and both Axiom 1 and its relaxation are only required to show the optimality of the exponent,
which we do not consider here. Axiom 4 introduces the notion of “universal distributions”, inspired
by a similar idea in the quantum setting, which is central to proving the above extension. In the
next section, we look at the proof specialized to a particular composite hypothesis testing setup,
to illustrate the utility of these universal distributions. The setup we consider also provides an
operational meaning to Sibson’s mutual information (1), which appears in the error exponent.
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3 Sibson’s Mutual Information as an Error Exponent

As motivated above, consider the following composite hypothesis testing setup:

null hypothesis : (Xn, Y n) ∼ Pn
XY ,

alternative hypothesis : Xn ∼ Pn
X , independent of Y n.

(3)

Then, Hoeffding’s bound can be extended to this setup as follows.

Theorem 1. For the composite hypothesis setup in (3), there exists a sequence of tests such that
the type-II error qn ≤ exp(−nR) for some R > 0, and the type-I error decays exponentially fast as

pn = exp

(
−n sup

α∈(0,1)

1− α

α

(
ISα (X;Y )−R

)
+ o(n)

)
.

Moreover, this exponent is optimal, i.e., for any sequence of tests such that qn ≤ exp(−nR), pn
cannot decay any faster than the right-hand side above.

Proof. (achievability only) The alternative hypothesis in (3) is equivalent to saying that (Xn, Y n) ∈
Qn, where Qn = {Pn

X × QY n : QY n ∈ P(Yn)}. Let {Un}n∈N be a sequence of distributions on
(Xn, Y n), given by

Un(x
n, yn) = Pn

X(xn)
∑

T∈Tn(Y)

1

|Tn(Y)|
1

|T |
1{yn is of type T},

i.e., the product distribution whose marginal on Y n is a uniform distribution over all sequences yn

of a given type, with each type picked uniformly as well. It is easy to see that this choice of Un

satisfies Axiom 4. First, for any Qn ∈ Qsym
n , we have Qn(x

n, yn) ≤ |Tn(Y)|Un(x
n, yn). Further,

since Un ∈ Qn, we also have Dα(P
n ||Un) ≥ Dα(P

n || Qn).
Now fix an α ∈ (0, 1). Define the sequence of tests

Tn(x
n, yn) =

{
1 if Pn

XY (x
n, yn) ≥ exp(λn)Un(x

n, yn),

0 else,

where λn is as specified later. We can then upper bound the type-II error qn as

max
Qn∈Qn

Qn

[
Pn
XY (X

n, Y n) ≥ exp(λn)Un(X
n, Y n)

]
= max

Qn∈Qsym
n

Qn

[
Pn
XY (X

n, Y n) ≥ exp(λn)Un(X
n, Y n)

]
≤ |Tn(Y)|

∑
xn,yn

Un

[
Pn
XY (X

n, Y n) ≥ exp(λn)Un(X
n, Y n)

]
= |Tn(Y)|

∑
xn,yn

Un(x
n, yn)1

{
Pn
XY (x

n, yn) ≥ exp(λn)Un(x
n, yn)

}
≤ |Tn(Y)| exp(−αλn)

∑
xn,yn

Un(x
n, yn)1−αPn

XY (x
n, yn)α1

{
Pn
XY (x

n, yn) ≥ exp(λn)Un(x
n, yn)

}
≤ |Tn(Y)| exp(−αλn)

∑
xn,yn

Un(x
n, yn)1−αPn

XY (x
n, yn)α

= |Tn(Y)| exp(−αλn) exp
(
(α− 1)Dα(P

n
XY ||Un)

)
,
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where the first equality follows sinceQn is closed under symmetrization and the test Tn is permutation-
invariant (thanks to Un). Choosing λn = 1

α

(
log |Tn(Y)| + nR + (α − 1)Dα(P

n
XY ||Un)

)
, we have

that qn ≤ exp(−nR), as required. By a similar calculation, we can also upper bound the type-I
error pn as

pn ≤ exp

(
1− α

α

(
log |Tn(Y)|+ nR−Dα(P

n
XY ||Un)

))
≤ exp

(
1− α

α

(
log |Tn(Y)|+ nR−Dα(P

n
XY || Qn)

))
,

where the second step follows from Dα(P
n
XY ||Un) ≥ Dα(P

n
XY || Qn). All that is left to do is to

show that Sibson’s mutual information ISα (X;Y ) ≤ Dα(P
n
XY || Qn), and then we have the exponent

as stated in the theorem. This can be seen from

Dα(P
n
XY || Qn) = min

Qn∈P(Yn)
Dα(P

n
XY ||Pn

X ×Qn) = Dα(P
n
XY ||Pn

X ×Q∗
n),

where Q∗
n is the minimum-achieving distribution, given by (up to a normalizing constant factor)

Q∗
n(y

n) ∝

(∑
xn

Pn
X(xn)PY n|Xn(yn | xn)α

) 1
α

=
n∏

i=1

(∑
x

PX(x)PY |X(yi | x)α
) 1

α

=
n∏

i=1

Q∗
1(yi),

i.e., the minimum-achieving distributions have a product structure. Hence, we also have that
Dα(P

n
XY || Qn) = nDα(PXY || Q1) = nminQ∈P(Y)Dα(PXY ||PX × Q) = nISα (X;Y ), and we are

done.

The key role that the universal distribution plays is in bounding the type-I and type-II errors
simultaneously. They “dominate” (permutation-invariant) Qn up to a polynomial factor which
vanishes in the exponent, while still having a larger divergence with Pn. Attempts to replace Un

with other functions of Qn such as the maximum or minimum prove futile; for these choices, when
one of the errors is bounded satisfactorily, the other cannot be.

4 Conclusion

We have looked at an extension of results from simple hypothesis testing to composite hypothesis
testing via an axiomatic framework. The most powerful of these axioms is that involving the uni-
versal distributions. They provide a convenient way to deal with maxima over arbitrary sets by
allowing us to restrict the maximization to just permutation-invariant sets. It would be interesting
to study what these universal distributions actually represent, for more general classes of distribu-
tions, and whether requiring their existence is a particularly strong condition. Another direction
that looks promising is to see if these universal distribution techniques can be applied to other
settings not limited to hypothesis testing, to show, for example, achievability results in channel
coding setups.

References

[1] I. Csiszar, “The method of types,” IEEE Transactions on Information Theory, vol. 44, no. 6,
pp. 2505–2523, 1998. doi: 10.1109/18.720546.

5

https://doi.org/10.1109/18.720546


[2] S. Arimoto, “Information measures and capacity of order α for discrete memoryless channels,”
Topics in information theory, 1977.

[3] R. Sibson, “Information radius,” Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Ge-
biete, vol. 14, no. 2, pp. 149–160, 1969.

[4] H. Chernoff, “Large-sample theory: Parametric case,” The Annals of Mathematical Statistics,
vol. 27, no. 1, pp. 1–22, 1956.

[5] W. Hoeffding, “Asymptotically optimal tests for multinomial distributions,” The Annals of
Mathematical Statistics, pp. 369–401, 1965.

[6] M. Tomamichel and M. Hayashi, “Operational interpretation of Rényi information measures
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