
Markov Chains and Algorithmic Applications

Mini-Project: Solving the N -Queens Problem via the Metropolis

Algorithm

Adway Girish, Megh Shukla
Team name: MCAA (Meghkov Chains and Adwayrithmic Applications)

December 19, 2022

Problem description

Consider an N×N chessboard. The problem is to place N queens on the chessboard such that no two queens
may attack each other in that configuration (recall that a chess queen can move horizontally, vertically and
diagonally). The solution to this problem, in general, is not unique. The number of solutions is known
exactly only for N ≤ 27, but very recently, the asymptotic growth rate has been shown to be approximately
(0.143N)N [1, 2]. This mini-project consists of two parts:

1. to find a solution to the N -queens problem using the Metropolis algorithm, and

2. to estimate the number of solutions for large N .

1 Finding a solution

The Metropolis algorithm is a method to sample from a difficult distribution by constructing a Markov Chain
that has this distribution as its stationary distribution. It can also be used to solve optimization problems
by appropriately choosing the target distribution, e.g., to minimize a function f on S, defining the target
distribution to be

πβ(x) =
exp[−βf(x)]

Zβ
for x ∈ S, (1)

where Zβ =
∑

y∈S exp[−βf(y)], we have that as β → ∞, πβ approaches a uniform distribution on the
minima of f on S. Sampling from this distribution then gives us the solution to the minimization problem.

1.1 Theory

To solve the N queens problem, we formulate it as the solution to a minimization problem using the Metropo-
lis algorithm as follows.

1. State space. A trivial attempt would be to let the state space be S0, the set of all possible configurations

of N queens on an N ×N chessboard; note that |S0| =
(
N2

N

)
, which is of the order of (eN)N by Stirling’s

approximation. Observing that most of these states are completely uninteresting, we can reduce this to
a more manageable size – in particular, all configurations where there is more than one queen in any
row or column can be immediately rejected. We may thus reduce our state space to be simply the set of
configurations of N queens on an N ×N chessboard with no row or column having more than one queen,
which is isomorphic to the set of permutations of [N] ≜ {1, . . . , N}. Formally, we have that the state
space is given by

S = {σ = (σ1, . . . , σN), σ is a permutation of [N]}. (2)

Note that |S| = N !, which is of the order of
(
N
e

)N ≪ |S0|. A state σ ∈ S can be interpreted as the
configuration where for each i ∈ [N], the cell indexed by the row-column pair (i, σi) is occupied.

1

2. Base chain. Pick two numbers uniformly at random from [N] without replacement, and swap the
columns of the queens in the corresponding rows. Mathematically, suppose the numbers picked are p and q
satisfying 1 ≤ p < q ≤ N , then starting from σ = (σ1, . . . , σp−1, σp, σp+1, . . . , σq−1, σq, σq+1 . . . , σN) ∈ S,
we end up with µ = (σ1, . . . , σp−1, σq, σp+1, . . . , σq−1, σp, σq+1 . . . , σN), which is still in S, as it is still a
permutation of [N]. This corresponds to a chain with transition probabilities

ψσµ =

{
1

(N2)
if σ ∼ µ ≜ σ and µ differ at exactly two positions,

0 else.
(3)

That this is an irreducible chain is clear, as any target permutation can be obtained from any initial
permutation, by simply going in order from the first element to the last and swapping to set it to the
desired value. Since the state space is finite, this also implies that the base chain is positive-recurrent.

3. Energy function. Define the function f : S → Z+, the set of nonnegative integers, by

f(σ) = the number of pairs of queens in conflict in configuration σ ∈ S

=
∑

1≤i<j≤N

1{the queens at (i, σi) and (j, σj) are in conflict}.

The only conflicts possible are if the queens happen to be along the same diagonal line (since our choice
of state space eliminates the possibility of them being on the same horizontal or vertical line). This
happens if the line connecting the cells has “slope” 1 or −1, i.e., if σj−σi = i− j or j− i, or equivalently,
|σj − σi| = |j − i|. Hence we have a concise formulation of the energy function,

f(σ) =
∑

1≤i<j≤N

1{|σj − σi| = |j − i|}. (4)

4. Acceptance probabilities. Our target distribution is given by πβ , computed using the energy function
f defined above. Since the chosen base chain is symmetric, we have that the acceptance probabilities are
given by

aσµ = min

(
1,
πβ(µ)ψµσ

πβ(σ)ψσµ

)
= min

(
1,
πβ(µ)

πβ(σ)

)
= min (1, exp[−β(f(µ)− f(σ))])

=

{
1 if f(µ) ≤ f(σ),
exp[−β(f(µ)− f(σ))] else.

(5)

5. Metropolis chain. Using the quantities defined so far, we can finally compute the transition proba-
bilities for our Metropolis chain, which are given by

pσµ =

{
aσµψσµ if σ ̸= µ,

1−
∑

λ∈S,λ ̸=σ aσλψσλ else
=

1

(N2)
aσµ if σ ∼ µ,

1− 1

(N2)

∑
λ∼σ aσλ if σ = µ,

0 else,

(6)

with aσµ as given above. Observe that this chain is irreducible, positive-recurrent (since the base chain is
as well), and periodic (due the presence of self-loops, as aσλ must be lesser than 1 for some pair (σ, λ)),
which together imply that the chain is ergodic. Hence a stationary distribution exists, is given by πβ ,
and is also the limiting distribution.

6. Metropolis algorithm. The above formulation can be summarized as given in Algorithm 1 below.
Observe that the algorithm stops as soon as we have found a solution, since that is the aim. If our goal
was, say, to sample from πβ instead, we could modify it to continue running even after f(σ) becomes
zero, till it reaches some sort of steady state (which can be defined appropriately), then the samples that
it produces will be distributed as πβ . Call this the modified Metropolis algorithm, Algorithm 1′ (which
will be of use in the next part).

2

Algorithm 1: To find a solution to the N -queens problem

Input: N , state space S = permutations of [N], energy function f , β
Output: σ = a solution

1 Pick any permutation of [N] uniformly at random and call it σ
2 while f(σ) > 0 do
3 Pick a pair of numbers p, q uniformly at random from [N] without replacement
4 Construct µ with µi ← σi for i ̸= p, q, µp ← σq, and µq ← σp

5 Compute aσµ ←

{
1 if f(µ) ≤ f(σ),
exp[−β(f(µ)− f(σ))] else

6 With probability aσµ, set σ ← µ

7 Output σ. // is guaranteed to have f(σ) = 0

1.2 Experiments

All our simulations were performed using Matlab. Here are some additional practical considerations that
may not be obvious from an initial reading of Algorithm 1.

1. Efficiently updating the energy function? Computing f(σ) as given in Equation (4) takes around
N2 terms, which is not ideal since we will need to compute the energy of states at every iteration. From
Algorithm 1, we only really require the value of f(µ)−f(σ), where σ and µ differ at exactly two positions
p and q (with 1 ≤ p < q ≤ N w.l.o.g.). This gives us σ and µ as given in the paragraph on the base
chain at §1.1.2. Defining α(i, j) = 1{|µj − µi| = |j − i|} − 1{|σj − σi| = |j − i|} for notational simplicity,
observe that α(i, j) = 0 if (1) neither i nor j is p or q, (2) i = j, or (3) (i, j) = (p, q). Thus we have that
f(µ)− f(σ) can be simplified as

∑
1≤i<j≤N

1{|µj − µi| = |j − i|} −
∑

1≤i<j≤N

1{|σj − σi| = |j − i|} =
N−1∑
i=1

N∑
j=i+1

α(i, j)

=

N−1∑
i=1,
i ̸=p,q

 N∑
j=i+1

α(i, j)

+

N∑
j=p+1

α(p, j) +

N∑
j=q+1

α(q, j)

=

N−1∑
i=1,
i ̸=p,q

�
�
�
�
�
�
��>

0 N∑
j=i+1,
j ̸=p,q

α(i, j)

+ α(i, p)1{i < p}+ α(i, q)1{i < q}

+

N∑
j=p+1

α(p, j) +

N∑
j=q+1

α(q, j)

=

p−1∑
i=1

α(i, p) +

q−1∑
i=1,
i ̸=p

α(i, q) +

N∑
j=p+1

α(p, j) +

N∑
j=q+1

α(q, j)

=

p−1∑
i=1

α(i, p) +

q−1∑
i=1,
i ̸=p

α(i, q) +

N∑
i=p+1

α(i, p) +

N∑
i=q+1

α(i, q) [∵ α(i, j) = α(j, i); relabelling summation index]

=

N∑
i=1

α(i, p) +

N∑
i=1

α(i, q) =

N∑
i=1

[α(i, p) + α(i, q)] , [∵ α(i, i) = 0, α(p, q) = 0] (7)

which is of a linear order in N . A vectorized implementation on Matlab also makes it extremely efficient.

2. Cooling schedule? The parameter β may be thought of as an “inverse temperature”. A small value
of β (or a high temperature) gives us a distribution πβ that is close to the uniform distribution on all N !

3

states, while a large β (or a low temperature) gives us exactly the uniform distribution on the solutions.
It may seem, then, that the value of β should be chosen to be as large as possible, but the problem then
is that it becomes nearly impossible to escape from local minima, since the “effort” needed to overcome
the barrier (which is exponential in β) is too large, so the algorithm could take longer to reach the global
minima. A possible solution is simulated annealing, where we start from a small β (high temperature)
and increase it gradually to a large value (“cool” it), to ensure better exploration at the initial stages.
Some standard “cooling schedules” are linear, quadratic, exponential and logarithmic in the number of
iterations, and we test all these possibilities against a constant value of β in Figure 1. The conclusion is
that simulated annealing offers little, if any, improvement.

Figure 1: “Is it worth using simulated annealing here?”: Seems not, as even a constant β performs at par
with various cooling schedules for simulated annealing, i.e., it seems to reach a solution (and even steady
state) in a similar amount of time. The plots are meant to be illustrative, even when repeated with different
constants than 5, the results were of a similar nature. Results shown for N = 100.

3. Value of β? Being reasonably convinced that a constant β will suffice, we now look to find a good one.
With a β that is too small, one would suspect that πβ is too close to the uniform distribution, and thus
a solution may never be attained. The plots in Figure 2 confirm this, and β = 20 works for N = 100.

And finally, in Figure 4 are the plots showing that the code does indeed work for N = 100 and N = 1000,
both obtained by taking β = 20. Since the actual solutions obtained for large N are incomprehensible
visually, example solutions are shown in Figure 3 for small N .

2 Estimating the number of solutions

When β → ∞, the distribution πβ approaches the uniform distribution on the solutions to the N -queens
problem. Hence Z∞ is the required number of solutions. By using the Metropolis algorithm to sample from
πβ , we cleverly avoided having to compute precisely this quantity, but now we attempt to estimate it.

2.1 Theory

Consider the algorithm given in Algorithm 2 to estimate the value of Z∞.
It is easy to see that this algorithm is indeed estimating the right quantity as long as β∗ is large enough so

4

Figure 2: “What inverse temperature β should be chosen?”: Observe that for small β (such as β = 1, 2), the
limiting distribution πβ simply has too large a fraction of the total probability on configurations that are
not solutions to the problem, leaving us in a situation where f(σt) never becomes equal to zero. Beyond a
certain point however (such as for β = 20), πβ has most of its probability concentrated on the solutions to
the N -queens problem, which is exactly our goal. Results shown for N = 100.

Algorithm 2: To estimate the number of solutions to the N -queens problem

Input: N , S = permutations of [N], f , M , T , β∗, {(βi)Ti=0 : 0 = β0 < β1 < · · · < βT = β∗}
Output: Ẑ∞ = an estimate of Z∞

1 Compute Z0 ← N !
2 for t = 0, . . . , T − 1 do

3 Run the (modified) Metropolis algorithm, Algorithm 1′ ,to obtain πβt
(x) =

exp(−βtf(x))∑
y∈S exp(−βtf(y))

4 Draw M i.i.d. samples X1, . . . , XM from πβt

5 Compute Γt ← 1
M

∑M
k=1 exp [−(βt+1 − βt)f(Xk)]

6 Compute and output Ẑ∞ ← Z0

∏T−1
t=0 Γt.

that Zβ∗ ≈ Z∞, as

E
[
Ẑ∞

]
= E

[
Z0

T−1∏
t=0

Γt

]

= E

[
Z0

T−1∏
t=0

{
1

M

M∑
k=1

exp [−(βt+1 − βt)f(Xk)]

}]

= Z0

T−1∏
t=0

{
1

M

M∑
k=1

E [exp [−(βt+1 − βt)f(Xk)]]

}
[∵ Xk are drawn i.i.d. at each t; linearity of E]

= Z0

T−1∏
t=0

{∑
x∈S

exp [−(βt+1 − βt)f(x)]πβt
(x)

}

= Z0

T−1∏
t=0

Zβt+1

Zβt

= Zβ∗ ≈ Z∞,

5

5 Z0L0Z
4 QZ0Z0
3 Z0ZQZ
2 0L0Z0
1 Z0Z0L

a b c d e

(a) N = 5

25Z0Z0Z0Z0Z0Z0Z0Z0Z0Z0L0Z0Z
240Z0Z0Z0Z0L0Z0Z0Z0Z0Z0Z0Z0
23Z0Z0Z0Z0Z0Z0Z0Z0Z0Z0ZQZ0Z
220ZQZ0Z0Z0Z0Z0Z0Z0Z0Z0Z0Z0
21Z0Z0Z0Z0Z0ZQZ0Z0Z0Z0Z0Z0Z
200Z0Z0Z0Z0Z0Z0Z0ZQZ0Z0Z0Z0
19Z0Z0Z0Z0Z0Z0L0Z0Z0Z0Z0Z0Z
180Z0Z0Z0Z0Z0Z0Z0Z0L0Z0Z0Z0
17Z0ZQZ0Z0Z0Z0Z0Z0Z0Z0Z0Z0Z
160Z0Z0Z0L0Z0Z0Z0Z0Z0Z0Z0Z0
15Z0Z0Z0Z0Z0Z0Z0Z0Z0Z0Z0L0Z
140Z0Z0Z0Z0Z0Z0Z0Z0Z0Z0Z0ZQ
13Z0Z0Z0Z0Z0Z0Z0ZQZ0Z0Z0Z0Z
120L0Z0Z0Z0Z0Z0Z0Z0Z0Z0Z0Z0
11Z0Z0Z0Z0Z0Z0Z0Z0Z0Z0Z0ZQZ
100Z0Z0Z0Z0Z0Z0Z0Z0Z0L0Z0Z0
9 Z0Z0Z0Z0Z0L0Z0Z0Z0Z0Z0Z0Z
8 0Z0Z0Z0Z0Z0Z0ZQZ0Z0Z0Z0Z0
7 Z0Z0L0Z0Z0Z0Z0Z0Z0Z0Z0Z0Z
6 QZ0Z0Z0Z0Z0Z0Z0Z0Z0Z0Z0Z0
5 Z0Z0ZQZ0Z0Z0Z0Z0Z0Z0Z0Z0Z
4 0Z0Z0Z0ZQZ0Z0Z0Z0Z0Z0Z0Z0
3 Z0Z0Z0Z0Z0Z0Z0Z0Z0L0Z0Z0Z
2 0Z0Z0Z0Z0Z0Z0L0Z0Z0Z0Z0Z0
1 Z0Z0Z0L0Z0Z0Z0Z0Z0Z0Z0Z0Z

a b c d e f g h i j k l m n o p q r s t u v w x y

(b) N = 25

Figure 3: Solutions obtained using Algorithm 1; observe that no two queens can attack each other.

6

(a) N = 100 (b) N = 1000

Figure 4: Plots showing the evolution of the energy function evaluated at each iteration of the Metropolis
algorithm (Algorithm 1) to obtain a solution to the N -queens problem, using a constant inverse temperature
of 20; note that the algorithm stops when f(σt) hits zero, i.e., a solution is reached.

i.e., it is nearly an unbiased estimator. But how good is it? The variance of Ẑ∞ can be calculated as

var
(
Ẑ∞

)
= var

(
Z0

T−1∏
t=0

Γt

)

= Z2
0

E

(T−1∏
t=0

Γt

)2
−(E[T−1∏

t=0

Γt

])2
 [∵ var(aX) = a2var(X); var(X) = E[X2]− E[X]2]

= Z2
0

E

[
T−1∏
t=0

Γ2
t

]
−

(
E

[
T−1∏
t=0

Γt

])2
 [by rearranging terms]

= Z2
0

T−1∏
t=0

E
[
Γ2
t

]
−

(
T−1∏
t=0

E [Γt]

)2
 [∵ Γt are independent]

= Z2
0

{
T−1∏
t=0

(
var(Γt) + E [Γt]

2
)
−

T−1∏
t=0

E [Γt]
2

}
. [by rearranging terms; var(X) = E[X2]− E[X]2]

Consider Γt =
1
M

∑M
k=1 exp [−(βt+1 − βt)f(Xk)], for which we have

var(Γt) =
1

M2
var

M∑
k=1

(exp [−(βt+1 − βt)f(Xk)]) [∵ var(aX) = a2var(X)]

=
1

M
var (exp [−(βt+1 − βt)f(Xk)]) . [∵ var(X + Y) = var(X) + var(Y) if X ⊥⊥ Y ; Xk are i.i.d.]

Note that 0 ≤ f(Xk) ≤ N < ∞, and βt+1 − βt > 0, so exp [−(βt+1 − βt)f(Xk)] lies in (0, 1]. For a random

variable bounded on [a, b], the maximum possible variance is (b−a)2

4 . Here, we have a = 0, b = 1, which gives
us

var(Γt) =
1

M
var (exp [−(βt+1 − βt)f(Xk)]) ≤

1

4M
.

7

Additionally, since βt+1 > βt, we must have
Zβt+1

Zβt
< 1 (since exp[−βf(x)] is a nonincreasing function of β

in general, and decreasing for all x such that f(x) > 0). Let the maximum value taken by this ratio over all
t ∈ {0, . . . , T − 1} be r < 1. Then we have,

var
(
Ẑ∞

)
= Z2

0

{
T−1∏
t=0

(
var(Γt) + E [Γt]

2
)
−

T−1∏
t=0

E [Γt]
2

}

≤ Z2
0

T−1∏
t=0

(
1

4M
+ r2

)
= Z2

0

(
1

4M
+ r2

)T

≈ Z2
0

MT
, (8)

if M is chosen such that r2 ≪ 3
4M , or equivalently, M ≪ 3

4r2 . While loose, it is still a useful upper bound.

2.2 Experiments

Once again, all simulations were performed on Matlab and here are some considerations that are of interest
from a practical perspective.

1. As N gets large, N ! very quickly becomes impossibly large to deal with, so much so that Matlab simply
outputs Inf for N > 200. To avoid obtaining such unhelpful expressions, it is better to keep track of the
logarithm of Z0 and each Γt, and then simply add them all up to obtain an estimate of logZ∞. This also
makes the computations easier since the quantities involved are smaller in magnitude. (All logarithms
involved as results, plots or otherwise are computed with respect to base 10.)

2. To obtain i.i.d. samples from πβt , the Metropolis algorithm must (1) run until it “reaches” the stationary
distribution, and (2) produce independent samples. Simply taking the first M samples after reaching
steady state will not give i.i.d. samples, since they will be correlated. One way to eliminate this correlation
is to take only one in, say, 500 samples and discard the rest. As for reaching the stationary distribution,
the ideal solution would be to calculate the mixing time, but an easier method is to simply look at the
plots of f(σt) vs. t as in Figures 1 and 2 for the desired ranges of N , and make an estimate of how long
it takes to get close enough to steady state. For large N , we found that N2 samples were sufficient, and
for small N , N2β∗ samples were needed. Of course, this is not an exact method, but as we shall see soon,
these values are indeed enough to obtain good estimates.

3. Continuing from the variance analysis, we have the following. Even when f(x) = 2 for all x ∈ S, taking
βt+1 − βt = 1 gives us r = 1

e2 ≈ 0.135. However, f(x) takes values all the way up to N . Hence, even

with smaller values of βt+1 − βt, we can expect to have r > 1
e2 , which gives us M ≪ 3e4

4 ≈ 40, so taking

M = 10 should give a reasonable estimate with an appropriate choice of T such that
Z2

0

MT ≪ 1. Let
M = 10, then choosing T such that T ≫ 2N logN > logZ2

0 will suffice (but is often not necessary).

4. As seen from the simulation results for the previous section, β = 20 seems to give a πβ that has most of
its probability on the solutions to the N -queens problem, thus we take β∗ = 20. An easy choice of βt,
then, is given by βt =

t
T β

∗ for t = 0, . . . , T .

One way to check if the algorithm is indeed estimating the number of solutions correctly is to plot logZβt

as a function of βt. One would expect the plot to start at a high value at β0 = 0, and then decrease as βt
increases. If our choice of βT = β∗ were good enough, in the sense that Zβ∗ ≈ Z∞, logZβt

should become
nearly constant as βt gets closer to β∗. We would also want the plots to be as “smooth” as possible, since
Zβ is a continuous function of β. If out plots are either not smooth or not saturating, there must have been
a mistake in our choice of one of the time to reach steady state, M , or T . In Figure 5, we plot logZβt vs. βt
for N = 10, 15, 20, 25, and observe that we do indeed get a continuous plot that saturates by taking β∗ = 20,
M = 10, and T = 200, which suggests that the algorithm is correctly estimating the number of solutions. In
fact, for these N , the number of solutions in known exactly, and they are compared in Table 1.

8

Figure 5: Plot showing logZβt vs. βt; observe that we get essentially continuous plots (in the sense of having
no jumps) that saturate to logZ∞ as expected, giving solutions that are very close to the actual values as
seen in Table 1.

N Exact number of solutions, Z∞ Estimated number of solutions, Ẑ∞ logZ∞ log Ẑ∞
10 724 712 2.8597 2.8526
15 2,279,184 1,788,021 6.3578 6.2524
20 39,029,188,884 21,059,472,284 10.5914 10.3234
25 2,207,893,435,808,352 2,749,411,828,087,284 15.3440 15.4392

Table 1: Comparison of the estimated number of solutions versus the exact number of solutions when the
value is known exactly, taken from the Wikipedia page [2]. The values of Ẑ∞ are rounded to the nearest
integer; the logZβt

vs. βt plots corresponding to these estimated values are given in Figure 7.

9

Another check is to make use of the recently calculated asymptotic growth rate of (0.143 N)N [1], and
plot the number of solutions obtained in the same run as above against this curve, which we do in Figure
6, but this time, with larger values of N = 100, 200, 300, 500, with the parameters β∗ = 20, M = 10, and
T = 500. The associated plots of logZβt

vs. βt are given in Figure 7.

Figure 6: Comparison of the estimated number of solutions versus the asymptotic growth rate given by
Simkin [1]; the logZβt

vs. βt plots corresponding to these estimated values are given in Figure 7.

Figure 7: Plot showing logZβt
vs. βt for large values of N ; once again, observe that we get essentially

continuous plots that saturate to logZ∞ as expected, to obtain solutions that are virtually indistinguishable
from what is expected theoretically as seen in Figure 6.

Conclusion

In Part 1, we used the Metropolis algorithm to find a solution to the N -queens problem. Using the informa-
tion obtained from this exercise (such as the time needed to reach a steady state), in part 2, we estimated
the number of solutions. Our estimates are close to the actual values where they are known, and also match

10

the asymptotic growth rate for large N .

Note: We have also implemented the Metropolis algorithm using Numba CUDA and is available in the
attached Jupyter notebook. While the approximate running time is similar to a highly vectorized CPU
implementation, the CUDA implementation should provide significant speedups for large values of N .

References

[1] Michael Simkin. The number of n-queens configurations. 2021. url: https://arxiv.org/abs/2107.
13460.

[2] Wikipedia contributors. Eight queens puzzle — Wikipedia, The Free Encyclopedia. [Online; accessed
18-December-2022]. 2022. url: https://en.wikipedia.org/wiki/Eight_queens_puzzle.

11

https://arxiv.org/abs/2107.13460
https://arxiv.org/abs/2107.13460
https://en.wikipedia.org/wiki/Eight_queens_puzzle

	Finding a solution
	Theory
	Experiments

	Estimating the number of solutions
	Theory
	Experiments

