

B.Tech. Project: Spatially Coupled LDPC Codes Over Fading Channels

Adway Girish Roll no. 180070002

Supervisor: Prof. Kumar Appaiah

Department of Electrical Engineering IIT Bombay

November 26, 2021

Outline

- Pading Channels
- 8 Results I: Interleaving With Latency Constraint
- 4 Results II: Windowed Decoding

Codes and Parity-check Matrices

Tanner graph for **H** (Eqn. 1)*

Codeword $\mathbf{x} \in \text{linear code } C \iff \mathbf{H}\mathbf{x}^{\intercal} = \mathbf{0}$

^{*}Tom Richardson and Ruediger Urbanke. *Modern Coding Theory*. USA: Cambridge University Press, 2008. ISBN: 0521852293

LDPC Codes and Protographs

⁽b) (3,6)-regular protograph (Eqn. 3)[†]

*Costello J., Lara Dolecek, T.E. Fuja, et al. "Spatially Coupled Sparse Codes on Graphs - Theory and Practice". In: Communications Magazine, IEEE (Oct. 2013)

[†]David G. M. Mitchell, Michael Lentmaier, and Daniel J. Costello. "Spatially Coupled LDPC Codes Constructed From Protographs". In: *IEEE Transactions on Information Theory* 9 (2015) 4/19

Spatial Coupling

^{*}David G. M. Mitchell, Michael Lentmaier, and Daniel J. Costello. "Spatially Coupled LDPC Codes Constructed From Protographs". In: *IEEE Transactions on Information Theory* 9 (2015)

Performance of SC-LDPC Codes

$$\lim_{w,L\to\infty} R(J,K,L,w)$$
$$= 1 - \frac{J}{K}$$
$$\lim_{w,L\to\infty} h^{BP}(J,K,L,w)$$
$$= h^{MAP}(J,K)$$

Channel Model and Interleaving

(David Tse and Pramod Viswanath. Fundamentals of Wireless Communication. USA: Cambridge University Press, 2005. ISBN: 0521845270)

SC-LDPC Codes	Fading Channels	Results I: Interleaving With Latency Constraint	Results II: Windowed Decoding	Conclusion
0000	00	000000	000	00

Diversity

Comparison With Prior Work

Work	Fading	Interleaving
Najeeb ul Hassan, Michael Lentmaier, Iryna Andriyanova, et al. "Improving code diversity on block-fading channels by spatial coupling". In: 2014	block	no
Yunlong Zhao, Yi Fang, and Zhaojie Yang. "Interleaver Design for Small-Coupling-Length Spatially Coupled Protograph LDPC- Coded BICM Systems Over Wireless Fading Channels". In: <i>IEEE</i> <i>Access</i> (2020), Sebastian Cammerer, Xiaojie Wang, Yingyan Ma, et al. "Spatially Coupled LDPC Codes and the Multiple Access Channel". In: 2019	IID	yes (BICM)
this work	correlated	yes (block)

Simulation of Fading Channels

Input: C(J, K, L) ensemble; SNR, f_d , $\sigma^2(=1)$ of fading channel **Output:** BER

- 1: total errors \leftarrow 0, total bits \leftarrow 0
- 2: generate a C(J, K, L) code of blocklength n
- 3: repeat
- 4: encode, interleave, BPSK modulate
- 5: generate channel realization
- 6: send through channel
- 7: demodulate, deinterleave, decode
- 8: $\mathsf{BER} \leftarrow \frac{\mathsf{total errors}}{\mathsf{total bits}}$
- 9: until BER converges

 \triangleright averaging over time

 $^{{\}tt BP} \ implementation, \ {\tt Rayleigh} \ process \ {\tt generated} \ {\tt using} \ {\tt IT++, \ {\tt http://itpp.sourceforge.net/4.3.1/} }$

Fast Fading Channel

Moderately Fast Fading Channel

 $f_{\rm d} = 10^{-4}$:

n		d*	Diversity		
		u	direct	interleaved	
	15000	3	1.29	1.81	
	12000	6	1.05	1.82	
	11000	11	1.09	2.58	
	10400	26	1.03	2.99	
	10200	51	1.08	2.86	

SNR (in dB)

fd = 1e-4

10-1

Slow Fading Channel

 $f_{\rm d} = 10^{-5}$:

	d*	Diversity		
"		direct	interleaved	
15000	3	0.9	1.17	
12000	6	0.99	1.17	
11000	11	0.79	1.13	
10400	26	1.1	1.26	
10200	51	0.83	1.2	

뛽 10-2 n = 15000, with interleaving n = 15000, no interleaving n = 12000, with interleaving n = 12000, no interleaving n = 11000, with interleaving n = 11000, no interleaving n = 10400, with interleaving n = 10400, no interleaving n = 10200, with interleaving n = 10200, no interleaving 10-3 18 6 8 10 12 14 16

SNR (in dB)

fd = 1e-5

IID Channel (For Reference)

n	Diversity
15000	26
12000	23.9
11000	18.6
10400	24.8
10200	22.3

Windowed Decoding Principle

(Aravind R. Iyengar, Marco Papaleo, Paul H. Siegel, et al. "Windowed Decoding of Protograph-Based LDPC Convolutional Codes Over Erasure Channels". In: *IEEE Transactions on Information Theory* 4 (2012))

Comparison With Prior Work

Work	Channel	Variation with W
Aravind R. Iyengar, Marco Papaleo, Paul H. Siegel, et al.		
"Windowed Decoding of Protograph-Based LDPC Convo-		
lutional Codes Over Erasure Channels". In: IEEE Transac-		
tions on Information Theory 4 (2012), Aravind R. Iyengar,	IID binary erasure	yes
Paul H. Siegel, Rüdiger L. Urbanke, et al. "Windowed De-		
coding of Spatially Coupled Codes". In: IEEE Transactions		
on Information Theory 4 (2013)		
Iryna Andriyanova, Najeeb UI Hassan, Michael Lentmaier,		
et al. "SC-LDPC codes over the block-fading channel: Ro-	block fading	yes
bustness to a synchronisation offset". In: 2015		
Sebastian Cammerer, Xiaojie Wang, Yingyan Ma, et al.		
"Spatially Coupled LDPC Codes and the Multiple Access	IID fading	no
Channel". In: 2019		
this work	correlated fading	yes

Performance of WD on C(3,6,200) codes

BP implementation on MATLAB adapted from NPTEL: LDPC and Polar Codes in 5G Standard (Dr. Andrew Thangaraj), https://nptel.ac.in/courses/117/106/108106137/ 17/19

Summary

SC-LDPC Codes	Fading Channels	Results I: Interleaving With Latency Constraint	Results II: Windowed Decoding	Conclusion
0000				00

Thank you